Reliability of RoHS-Compliant 2D and 3D IC Interconnects

Reliability of RoHS-Compliant 2D and 3D IC Interconnects PDF Author: John H. Lau
Publisher: McGraw Hill Professional
ISBN: 007175380X
Category : Technology & Engineering
Languages : en
Pages : 640

Get Book

Book Description
Proven 2D and 3D IC lead-free interconnect reliability techniques Reliability of RoHS-Compliant 2D and 3D IC Interconnects offers tested solutions to reliability problems in lead-free interconnects for PCB assembly, conventional IC packaging, 3D IC packaging, and 3D IC integration. This authoritative guide presents the latest cutting-edge reliability methods and data for electronic manufacturing services (EMS) on second-level interconnects, packaging assembly on first-level interconnects, and 3D IC integration on microbumps and through-silicon-via (TSV) interposers. Design reliable 2D and 3D IC interconnects in RoHS-compliant projects using the detailed information in this practical resource. Covers reliability of: 2D and 3D IC lead-free interconnects CCGA, PBGA, WLP, PQFP, flip-chip, lead-free SAC solder joints Lead-free (SACX) solder joints Low-temperature lead-free (SnBiAg) solder joints Solder joints with voids, high strain rate, and high ramp rate VCSEL and LED lead-free interconnects 3D LED and 3D MEMS with TSVs Chip-to-wafer (C2W) bonding and lead-free interconnects Wafer-to-wafer (W2W) bonding and lead-free interconnects 3D IC chip stacking with low-temperature bonding TSV interposers and lead-free interconnects Electromigration of lead-free microbumps for 3D IC integration

Reliability of RoHS-Compliant 2D and 3D IC Interconnects

Reliability of RoHS-Compliant 2D and 3D IC Interconnects PDF Author: John H. Lau
Publisher: McGraw Hill Professional
ISBN: 007175380X
Category : Technology & Engineering
Languages : en
Pages : 640

Get Book

Book Description
Proven 2D and 3D IC lead-free interconnect reliability techniques Reliability of RoHS-Compliant 2D and 3D IC Interconnects offers tested solutions to reliability problems in lead-free interconnects for PCB assembly, conventional IC packaging, 3D IC packaging, and 3D IC integration. This authoritative guide presents the latest cutting-edge reliability methods and data for electronic manufacturing services (EMS) on second-level interconnects, packaging assembly on first-level interconnects, and 3D IC integration on microbumps and through-silicon-via (TSV) interposers. Design reliable 2D and 3D IC interconnects in RoHS-compliant projects using the detailed information in this practical resource. Covers reliability of: 2D and 3D IC lead-free interconnects CCGA, PBGA, WLP, PQFP, flip-chip, lead-free SAC solder joints Lead-free (SACX) solder joints Low-temperature lead-free (SnBiAg) solder joints Solder joints with voids, high strain rate, and high ramp rate VCSEL and LED lead-free interconnects 3D LED and 3D MEMS with TSVs Chip-to-wafer (C2W) bonding and lead-free interconnects Wafer-to-wafer (W2W) bonding and lead-free interconnects 3D IC chip stacking with low-temperature bonding TSV interposers and lead-free interconnects Electromigration of lead-free microbumps for 3D IC integration

Assembly and Reliability of Lead-Free Solder Joints

Assembly and Reliability of Lead-Free Solder Joints PDF Author: John H. Lau
Publisher: Springer Nature
ISBN: 9811539200
Category : Technology & Engineering
Languages : en
Pages : 545

Get Book

Book Description
This book focuses on the assembly and reliability of lead-free solder joints. Both the principles and engineering practice are addressed, with more weight placed on the latter. This is achieved by providing in-depth studies on a number of major topics such as solder joints in conventional and advanced packaging components, commonly used lead-free materials, soldering processes, advanced specialty flux designs, characterization of lead-free solder joints, reliability testing and data analyses, design for reliability, and failure analyses for lead-free solder joints. Uniquely, the content not only addresses electronic manufacturing services (EMS) on the second-level interconnects, but also packaging assembly on the first-level interconnects and the semiconductor back-end on the 3D IC integration interconnects. Thus, the book offers an indispensable resource for the complete food chain of electronics products.

Fan-Out Wafer-Level Packaging

Fan-Out Wafer-Level Packaging PDF Author: John H. Lau
Publisher: Springer
ISBN: 9811088845
Category : Technology & Engineering
Languages : en
Pages : 303

Get Book

Book Description
This comprehensive guide to fan-out wafer-level packaging (FOWLP) technology compares FOWLP with flip chip and fan-in wafer-level packaging. It presents the current knowledge on these key enabling technologies for FOWLP, and discusses several packaging technologies for future trends. The Taiwan Semiconductor Manufacturing Company (TSMC) employed their InFO (integrated fan-out) technology in A10, the application processor for Apple’s iPhone, in 2016, generating great excitement about FOWLP technology throughout the semiconductor packaging community. For many practicing engineers and managers, as well as scientists and researchers, essential details of FOWLP – such as the temporary bonding and de-bonding of the carrier on a reconstituted wafer/panel, epoxy molding compound (EMC) dispensing, compression molding, Cu revealing, RDL fabrication, solder ball mounting, etc. – are not well understood. Intended to help readers learn the basics of problem-solving methods and understand the trade-offs inherent in making system-level decisions quickly, this book serves as a valuable reference guide for all those faced with the challenging problems created by the ever-increasing interest in FOWLP, helps to remove roadblocks, and accelerates the design, materials, process, and manufacturing development of key enabling technologies for FOWLP.

Analyse et caractérisation des couplages substrat et de la connectique dans les

Analyse et caractérisation des couplages substrat et de la connectique dans les PDF Author: Fengyuan Sun
Publisher: Editions Publibook
ISBN: 2753903298
Category :
Languages : en
Pages : 178

Get Book

Book Description
The proposal of doubling the number of transistors on an IC chip (with minimum costs and subtle innovations) every 24 months by Gordon Moore in 1965 (the so-called called Moore's law) has been the most powerful driver for the emphasis of the microelectronics industry in the past 50 years. This law enhances lithography scaling and integration, in 2D, of all functions on a single chip, increasingly through system-on-chip (SOC). On the other hand, the integration of all these functions can be achieved through 3D integrations . Generally speaking, 3D integration consists of 3D IC packaging, 3D IC integration, and 3D Si integration. They are different and mostly the TSV (through-silicon via) separates 3D IC packaging from 3D IC/Si integrations since the latter two uses TSVs, but 3D IC packaging does not. TSV (with a new concept that every chip or interposer could have two surfaces with circuits) is the heart of 3D IC/Si integrations. Continued technology scaling together with the integration of disparate technologies in a single chip means that device performance continues to outstrip interconnect and packaging capabilities, and hence there exist many difficult engineering challenges, most notably in power management, noise isolation, and intra and inter-chip communication. 3D Si integration is the right way to go and compete with Moore's law (more than Moore versus more Moore). However, it is still a long way to go. In this book, Fengyuan SUN proposes new substrate network extraction techniques. Using this latter, the substrate coupling and loss in IC's can be analyzed. He implements some Green/TLM (Transmission Line Matrix) algorithms in MATLAB. It permits to extract impedances between any number of embedded contacts or/and TSVS. He does investigate models of high aspect ratio TSV, on both analytical and numerical methods electromagnetic simulations. This model enables to extract substrate and TSV impedance, S parameters and parasitic elements, considering the variable resistivity of the substrate. It is full compatible with SPICE-like solvers and should allow an investigation in depth of TSV impact on circuit performance.

Semiconductor Advanced Packaging

Semiconductor Advanced Packaging PDF Author: John H. Lau
Publisher: Springer Nature
ISBN: 9811613761
Category : Technology & Engineering
Languages : en
Pages : 513

Get Book

Book Description
The book focuses on the design, materials, process, fabrication, and reliability of advanced semiconductor packaging components and systems. Both principles and engineering practice have been addressed, with more weight placed on engineering practice. This is achieved by providing in-depth study on a number of major topics such as system-in-package, fan-in wafer/panel-level chip-scale packages, fan-out wafer/panel-level packaging, 2D, 2.1D, 2.3D, 2.5D, and 3D IC integration, chiplets packaging, chip-to-wafer bonding, wafer-to-wafer bonding, hybrid bonding, and dielectric materials for high speed and frequency. The book can benefit researchers, engineers, and graduate students in fields of electrical engineering, mechanical engineering, materials sciences, and industry engineering, etc.

Heterogeneous Integrations

Heterogeneous Integrations PDF Author: John H. Lau
Publisher: Springer
ISBN: 9811372241
Category : Technology & Engineering
Languages : en
Pages : 368

Get Book

Book Description
Heterogeneous integration uses packaging technology to integrate dissimilar chips, LED, MEMS, VCSEL, etc. from different fabless houses and with different functions and wafer sizes into a single system or subsystem. How are these dissimilar chips and optical components supposed to talk to each other? The answer is redistribution layers (RDLs). This book addresses the fabrication of RDLs for heterogeneous integrations, and especially focuses on RDLs on: A) organic substrates, B) silicon substrates (through-silicon via (TSV)-interposers), C) silicon substrates (bridges), D) fan-out substrates, and E) ASIC, memory, LED, MEMS, and VCSEL systems. The book offers a valuable asset for researchers, engineers, and graduate students in the fields of semiconductor packaging, materials sciences, mechanical engineering, electronic engineering, telecommunications, networking, etc.

Chiplet Design and Heterogeneous Integration Packaging

Chiplet Design and Heterogeneous Integration Packaging PDF Author: John H. Lau
Publisher: Springer Nature
ISBN: 9811999171
Category : Technology & Engineering
Languages : en
Pages : 542

Get Book

Book Description
The book focuses on the design, materials, process, fabrication, and reliability of chiplet design and heterogeneous integraton packaging. Both principles and engineering practice have been addressed, with more weight placed on engineering practice. This is achieved by providing in-depth study on a number of major topics such as chip partitioning, chip splitting, multiple system and heterogeneous integration with TSV-interposers, multiple system and heterogeneous integration with TSV-less interposers, chiplets lateral communication, system-in-package, fan-out wafer/panel-level packaging, and various Cu-Cu hybrid bonding. The book can benefit researchers, engineers, and graduate students in fields of electrical engineering, mechanical engineering, materials sciences, and industry engineering, etc.

Flip Chip, Hybrid Bonding, Fan-In, and Fan-Out Technology

Flip Chip, Hybrid Bonding, Fan-In, and Fan-Out Technology PDF Author: John H. Lau
Publisher: Springer Nature
ISBN: 9819721407
Category :
Languages : en
Pages : 515

Get Book

Book Description


3D Microelectronic Packaging

3D Microelectronic Packaging PDF Author: Yan Li
Publisher: Springer Nature
ISBN: 9811570906
Category : Technology & Engineering
Languages : en
Pages : 629

Get Book

Book Description
This book offers a comprehensive reference guide for graduate students and professionals in both academia and industry, covering the fundamentals, architecture, processing details, and applications of 3D microelectronic packaging. It provides readers an in-depth understanding of the latest research and development findings regarding this key industry trend, including TSV, die processing, micro-bumps for LMI and MMI, direct bonding and advanced materials, as well as quality, reliability, fault isolation, and failure analysis for 3D microelectronic packages. Images, tables, and didactic schematics are used to illustrate and elaborate on the concepts discussed. Readers will gain a general grasp of 3D packaging, quality and reliability concerns, and common causes of failure, and will be introduced to developing areas and remaining gaps in 3D packaging that can help inspire future research and development.

Through-Silicon Vias for 3D Integration

Through-Silicon Vias for 3D Integration PDF Author: John H. Lau
Publisher: McGraw Hill Professional
ISBN: 0071785159
Category : Technology & Engineering
Languages : en
Pages : 513

Get Book

Book Description
A comprehensive guide to TSV and other enabling technologies for 3D integration Written by an expert with more than 30 years of experience in the electronics industry, Through-Silicon Vias for 3D Integration provides cutting-edge information on TSV, wafer thinning, thin-wafer handling, microbumping and assembly, and thermal management technologies. Applications to highperformance, high-density, low-power-consumption, wide-bandwidth, and small-form-factor electronic products are discussed. This book offers a timely summary of progress in all aspects of this fascinating field for professionals active in 3D integration research and development, those who wish to master 3D integration problem-solving methods, and anyone in need of a low-power, wide-bandwidth design and high-yield manufacturing process for interconnect systems. Coverage includes: Nanotechnology and 3D integration for the semiconductor industry TSV etching, dielectric-, barrier-, and seed-layer deposition, Cu plating, CMP, and Cu revealing TSVs: mechanical, thermal, and electrical behaviors Thin-wafer strength measurement Wafer thinning and thin-wafer handling Microbumping, assembly, and reliability Microbump electromigration Transient liquid-phase bonding: C2C, C2W, and W2W 2.5D IC integration with interposers 3D IC integration with interposers Thermal management of 3D IC integration 3D IC packaging