Author: Achintya Haldar
Publisher: John Wiley & Sons
ISBN: 1119901642
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
RELIABILITY EVALUATION OF DYNAMIC SYSTEMS EXCITED IN TIME DOMAIN – REDSET Multi-disciplinary approach to structural reliability analysis for dynamic loadings offering a practical alternative to the random vibration theory and simulation Reliability Evaluation of Dynamic Systems Excited in Time Domain – REDSET is a multidisciplinary concept that enables readers to estimate the underlying risk that could not be solved in the past. The major hurdle was that the required limit state functions (LSFs) are implicit in nature and the lack of progress in the reliability evaluation methods for this class of problems. The most sophisticated deterministic analysis requires that the dynamic loadings must be applied in the time domain. To satisfy these requirements, REDSET is developed. Different types and forms of dynamic loadings including seismic, wind-induced wave, and thermomechanical loading in the form of heating and cooling of solder balls used in computer chips are considered to validate REDSET. Time domain representations and the uncertainty quantification procedures including the use of multiple time histories are proposed and demonstrated for all these dynamic loadings. Both onshore and offshore structures are used for validation. The potential of REDSET is demonstrated for implementing the Performance Based Seismic Design (PBSD) concept now under development in the United States. For wider multidisciplinary applications, structures are represented by finite elements to capture different types of nonlinearity more appropriately. Any computer program capable of conducting nonlinear time domain dynamic analysis can be used, and the underlying risk can be estimated with the help of several dozens or hundreds of deterministic finite element analyses, providing an alternative to the simulation approach. To aid comprehension of REDSET, numerous illustrative examples and solution strategies are presented in each chapter. Written by award-winning thought leaders from academia and professional practice, the following sample topics are included: Fundamentals of reliability assessment including set theory, modeling of uncertainty, the risk-based engineering design concept, and the evolution of reliability assessment methods Implicit performance or limit state functions are expressed explicitly by the extensively modified response surface method with several new experimental designs Uncertainty quantification procedures with multiple time histories for different dynamic loadings, illustrated with examples The underlying risk can be estimated using any computer program representing structures by finite elements with only few deterministic analyses REDSET is demonstrated to be an alternative to the classical random vibration concept and the basic simulation procedure for risk estimation purposes REDSET changes the current engineering design paradigm. Instead of conducting one deterministic analysis, a design can be made more dynamic load tolerant, resilient, and sustainable with the help of a few additional deterministic analyses This book describing REDSET is expected to complement two other books published by Wiley and authored by Haldar and Mahadevan: Probability, Reliability and Statistical Methods in Engineering Design and Reliability Assessment Using Stochastic Finite Element Analysis. The book is perfect to use as a supplementary resource for upper-level undergraduate and graduate level courses on reliability and risk-based design.
Reliability Evaluation of Dynamic Systems Excited in Time Domain
Author: Achintya Haldar
Publisher: John Wiley & Sons
ISBN: 1119901642
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
RELIABILITY EVALUATION OF DYNAMIC SYSTEMS EXCITED IN TIME DOMAIN – REDSET Multi-disciplinary approach to structural reliability analysis for dynamic loadings offering a practical alternative to the random vibration theory and simulation Reliability Evaluation of Dynamic Systems Excited in Time Domain – REDSET is a multidisciplinary concept that enables readers to estimate the underlying risk that could not be solved in the past. The major hurdle was that the required limit state functions (LSFs) are implicit in nature and the lack of progress in the reliability evaluation methods for this class of problems. The most sophisticated deterministic analysis requires that the dynamic loadings must be applied in the time domain. To satisfy these requirements, REDSET is developed. Different types and forms of dynamic loadings including seismic, wind-induced wave, and thermomechanical loading in the form of heating and cooling of solder balls used in computer chips are considered to validate REDSET. Time domain representations and the uncertainty quantification procedures including the use of multiple time histories are proposed and demonstrated for all these dynamic loadings. Both onshore and offshore structures are used for validation. The potential of REDSET is demonstrated for implementing the Performance Based Seismic Design (PBSD) concept now under development in the United States. For wider multidisciplinary applications, structures are represented by finite elements to capture different types of nonlinearity more appropriately. Any computer program capable of conducting nonlinear time domain dynamic analysis can be used, and the underlying risk can be estimated with the help of several dozens or hundreds of deterministic finite element analyses, providing an alternative to the simulation approach. To aid comprehension of REDSET, numerous illustrative examples and solution strategies are presented in each chapter. Written by award-winning thought leaders from academia and professional practice, the following sample topics are included: Fundamentals of reliability assessment including set theory, modeling of uncertainty, the risk-based engineering design concept, and the evolution of reliability assessment methods Implicit performance or limit state functions are expressed explicitly by the extensively modified response surface method with several new experimental designs Uncertainty quantification procedures with multiple time histories for different dynamic loadings, illustrated with examples The underlying risk can be estimated using any computer program representing structures by finite elements with only few deterministic analyses REDSET is demonstrated to be an alternative to the classical random vibration concept and the basic simulation procedure for risk estimation purposes REDSET changes the current engineering design paradigm. Instead of conducting one deterministic analysis, a design can be made more dynamic load tolerant, resilient, and sustainable with the help of a few additional deterministic analyses This book describing REDSET is expected to complement two other books published by Wiley and authored by Haldar and Mahadevan: Probability, Reliability and Statistical Methods in Engineering Design and Reliability Assessment Using Stochastic Finite Element Analysis. The book is perfect to use as a supplementary resource for upper-level undergraduate and graduate level courses on reliability and risk-based design.
Publisher: John Wiley & Sons
ISBN: 1119901642
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
RELIABILITY EVALUATION OF DYNAMIC SYSTEMS EXCITED IN TIME DOMAIN – REDSET Multi-disciplinary approach to structural reliability analysis for dynamic loadings offering a practical alternative to the random vibration theory and simulation Reliability Evaluation of Dynamic Systems Excited in Time Domain – REDSET is a multidisciplinary concept that enables readers to estimate the underlying risk that could not be solved in the past. The major hurdle was that the required limit state functions (LSFs) are implicit in nature and the lack of progress in the reliability evaluation methods for this class of problems. The most sophisticated deterministic analysis requires that the dynamic loadings must be applied in the time domain. To satisfy these requirements, REDSET is developed. Different types and forms of dynamic loadings including seismic, wind-induced wave, and thermomechanical loading in the form of heating and cooling of solder balls used in computer chips are considered to validate REDSET. Time domain representations and the uncertainty quantification procedures including the use of multiple time histories are proposed and demonstrated for all these dynamic loadings. Both onshore and offshore structures are used for validation. The potential of REDSET is demonstrated for implementing the Performance Based Seismic Design (PBSD) concept now under development in the United States. For wider multidisciplinary applications, structures are represented by finite elements to capture different types of nonlinearity more appropriately. Any computer program capable of conducting nonlinear time domain dynamic analysis can be used, and the underlying risk can be estimated with the help of several dozens or hundreds of deterministic finite element analyses, providing an alternative to the simulation approach. To aid comprehension of REDSET, numerous illustrative examples and solution strategies are presented in each chapter. Written by award-winning thought leaders from academia and professional practice, the following sample topics are included: Fundamentals of reliability assessment including set theory, modeling of uncertainty, the risk-based engineering design concept, and the evolution of reliability assessment methods Implicit performance or limit state functions are expressed explicitly by the extensively modified response surface method with several new experimental designs Uncertainty quantification procedures with multiple time histories for different dynamic loadings, illustrated with examples The underlying risk can be estimated using any computer program representing structures by finite elements with only few deterministic analyses REDSET is demonstrated to be an alternative to the classical random vibration concept and the basic simulation procedure for risk estimation purposes REDSET changes the current engineering design paradigm. Instead of conducting one deterministic analysis, a design can be made more dynamic load tolerant, resilient, and sustainable with the help of a few additional deterministic analyses This book describing REDSET is expected to complement two other books published by Wiley and authored by Haldar and Mahadevan: Probability, Reliability and Statistical Methods in Engineering Design and Reliability Assessment Using Stochastic Finite Element Analysis. The book is perfect to use as a supplementary resource for upper-level undergraduate and graduate level courses on reliability and risk-based design.
Handbook of Advanced Performability Engineering
Author: Krishna B. Misra
Publisher: Springer Nature
ISBN: 3030557324
Category : Technology & Engineering
Languages : en
Pages : 810
Book Description
This book considers all aspects of performability engineering, providing a holistic view of the activities associated with a product throughout its entire life cycle of the product, as well as the cost of minimizing the environmental impact at each stage, while maximizing the performance. Building on the editor's previous Handbook of Performability Engineering, it explains how performability engineering provides us with a framework to consider both dependability and sustainability in the optimal design of products, systems and services, and explores the role of performability in energy and waste minimization, raw material selection, increased production volume, and many other areas of engineering and production. The book discusses a range of new ideas, concepts, disciplines, and applications in performability, including smart manufacturing and Industry 4.0; cyber-physical systems and artificial intelligence; digital transformation of railways; and asset management. Given its broad scope, it will appeal to researchers, academics, industrial practitioners and postgraduate students involved in manufacturing, engineering, and system and product development.
Publisher: Springer Nature
ISBN: 3030557324
Category : Technology & Engineering
Languages : en
Pages : 810
Book Description
This book considers all aspects of performability engineering, providing a holistic view of the activities associated with a product throughout its entire life cycle of the product, as well as the cost of minimizing the environmental impact at each stage, while maximizing the performance. Building on the editor's previous Handbook of Performability Engineering, it explains how performability engineering provides us with a framework to consider both dependability and sustainability in the optimal design of products, systems and services, and explores the role of performability in energy and waste minimization, raw material selection, increased production volume, and many other areas of engineering and production. The book discusses a range of new ideas, concepts, disciplines, and applications in performability, including smart manufacturing and Industry 4.0; cyber-physical systems and artificial intelligence; digital transformation of railways; and asset management. Given its broad scope, it will appeal to researchers, academics, industrial practitioners and postgraduate students involved in manufacturing, engineering, and system and product development.
Risk Based Technologies
Author: Prabhakar V. Varde
Publisher: Springer
ISBN: 981135796X
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
This book presents selected topics in implementing a risk-based approach for complex engineering systems in general, and nuclear plants in particular. It addresses gap areas in implementing the risk-based approach to design, operation and regulation, covering materials reliability, digital system reliability, software reliability, human factor considerations, condition monitoring and prognosis, structural aspects in risk-based design as well as the application aspects like asset management for first-of-their-kind projects, strategic management and other academic aspect. Chapters are authored by renowned experts who address some of the identified challenges in implementation of risk-based approach in a clear and cogent manner, using illustrations, tables and photographs for ease of communication. This book will prove useful to researchers, professionals, and students alike.
Publisher: Springer
ISBN: 981135796X
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
This book presents selected topics in implementing a risk-based approach for complex engineering systems in general, and nuclear plants in particular. It addresses gap areas in implementing the risk-based approach to design, operation and regulation, covering materials reliability, digital system reliability, software reliability, human factor considerations, condition monitoring and prognosis, structural aspects in risk-based design as well as the application aspects like asset management for first-of-their-kind projects, strategic management and other academic aspect. Chapters are authored by renowned experts who address some of the identified challenges in implementation of risk-based approach in a clear and cogent manner, using illustrations, tables and photographs for ease of communication. This book will prove useful to researchers, professionals, and students alike.
Advances in Stochastic Structural Dynamics
Author: W. Q. Zhu
Publisher: CRC Press
ISBN: 0203492951
Category : Technology & Engineering
Languages : en
Pages : 626
Book Description
Collection of technical papers presented at the 5th International Conference on Stochastic Structural Dynamics (SSD03) in Hangzhou, China during May 26-28, 2003. Topics include direct transfer substructure method for random response analysis, generation of bounded stochastic processes, and sample path behavior of Gaussian processes.
Publisher: CRC Press
ISBN: 0203492951
Category : Technology & Engineering
Languages : en
Pages : 626
Book Description
Collection of technical papers presented at the 5th International Conference on Stochastic Structural Dynamics (SSD03) in Hangzhou, China during May 26-28, 2003. Topics include direct transfer substructure method for random response analysis, generation of bounded stochastic processes, and sample path behavior of Gaussian processes.
Reliability Assessment Using Stochastic Finite Element Analysis
Author: Achintya Haldar
Publisher: John Wiley & Sons
ISBN: 9780471369615
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
The first complete guide to using the Stochastic Finite Element Method for reliability assessment Unlike other analytical reliability estimation techniques, the Stochastic Finite Element Method (SFEM) can be used for both implicit and explicit performance functions, making it a particularly powerful and robust tool for today's engineer. This book, written by two pioneers in SFEM-based methodologies, shows how to use SFEM for the reliability analysis of a wide range of structures. It begins by reviewing essential risk concepts, currently available risk evaluation procedures, and the use of analytical and sampling methods in estimating risk. Next, it introduces SFEM evaluation procedures, with detailed coverage of displacement-based and stress-based deterministic finite element approaches. Linear, nonlinear, static, and dynamic problems are considered separately to demonstrate the robustness of the methods. The risk or reliability estimation procedure for each case is presented in different chapters, with theory complemented by a useful series of examples. Integrating advanced concepts in risk-based design, finite elements, and mechanics, Reliability Assessment Using Stochastic Finite Element Analysis is vital reading for engineering professionals and students in all areas of the field.
Publisher: John Wiley & Sons
ISBN: 9780471369615
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
The first complete guide to using the Stochastic Finite Element Method for reliability assessment Unlike other analytical reliability estimation techniques, the Stochastic Finite Element Method (SFEM) can be used for both implicit and explicit performance functions, making it a particularly powerful and robust tool for today's engineer. This book, written by two pioneers in SFEM-based methodologies, shows how to use SFEM for the reliability analysis of a wide range of structures. It begins by reviewing essential risk concepts, currently available risk evaluation procedures, and the use of analytical and sampling methods in estimating risk. Next, it introduces SFEM evaluation procedures, with detailed coverage of displacement-based and stress-based deterministic finite element approaches. Linear, nonlinear, static, and dynamic problems are considered separately to demonstrate the robustness of the methods. The risk or reliability estimation procedure for each case is presented in different chapters, with theory complemented by a useful series of examples. Integrating advanced concepts in risk-based design, finite elements, and mechanics, Reliability Assessment Using Stochastic Finite Element Analysis is vital reading for engineering professionals and students in all areas of the field.
Handbook of Smart Energy Systems
Author: Michel Fathi
Publisher: Springer Nature
ISBN: 3030979407
Category : Business & Economics
Languages : en
Pages : 3382
Book Description
This handbook analyzes and develops methods and models to optimize solutions for energy access (for industry and the general world population alike) in terms of reliability and sustainability. With a focus on improving the performance of energy systems, it brings together state-of-the-art research on reliability enhancement, intelligent development, simulation and optimization, as well as sustainable development of energy systems. It helps energy stakeholders and professionals learn the methodologies needed to improve the reliability of energy supply-and-demand systems, achieve more efficient long-term operations, deal with uncertainties in energy systems, and reduce energy emissions. Highlighting novel models and their applications from leading experts in this important area, this book will appeal to researchers, students, and engineers in the various domains of smart energy systems and encourage them to pursue research and development in this exciting and highly relevant field.
Publisher: Springer Nature
ISBN: 3030979407
Category : Business & Economics
Languages : en
Pages : 3382
Book Description
This handbook analyzes and develops methods and models to optimize solutions for energy access (for industry and the general world population alike) in terms of reliability and sustainability. With a focus on improving the performance of energy systems, it brings together state-of-the-art research on reliability enhancement, intelligent development, simulation and optimization, as well as sustainable development of energy systems. It helps energy stakeholders and professionals learn the methodologies needed to improve the reliability of energy supply-and-demand systems, achieve more efficient long-term operations, deal with uncertainties in energy systems, and reduce energy emissions. Highlighting novel models and their applications from leading experts in this important area, this book will appeal to researchers, students, and engineers in the various domains of smart energy systems and encourage them to pursue research and development in this exciting and highly relevant field.
Handbook of Probabilistic Models
Author: Pijush Samui
Publisher: Butterworth-Heinemann
ISBN: 0128165464
Category : Computers
Languages : en
Pages : 592
Book Description
Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems
Publisher: Butterworth-Heinemann
ISBN: 0128165464
Category : Computers
Languages : en
Pages : 592
Book Description
Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems
Reliability Evaluation of Dynamic Systems Excited in Time Domain - Redset
Author: Achintya Haldar
Publisher: John Wiley & Sons
ISBN: 1119901650
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
RELIABILITY EVALUATION OF DYNAMIC SYSTEMS EXCITED IN TIME DOMAIN – REDSET Multi-disciplinary approach to structural reliability analysis for dynamic loadings offering a practical alternative to the random vibration theory and simulation Reliability Evaluation of Dynamic Systems Excited in Time Domain – REDSET is a multidisciplinary concept that enables readers to estimate the underlying risk that could not be solved in the past. The major hurdle was that the required limit state functions (LSFs) are implicit in nature and the lack of progress in the reliability evaluation methods for this class of problems. The most sophisticated deterministic analysis requires that the dynamic loadings must be applied in the time domain. To satisfy these requirements, REDSET is developed. Different types and forms of dynamic loadings including seismic, wind-induced wave, and thermomechanical loading in the form of heating and cooling of solder balls used in computer chips are considered to validate REDSET. Time domain representations and the uncertainty quantification procedures including the use of multiple time histories are proposed and demonstrated for all these dynamic loadings. Both onshore and offshore structures are used for validation. The potential of REDSET is demonstrated for implementing the Performance Based Seismic Design (PBSD) concept now under development in the United States. For wider multidisciplinary applications, structures are represented by finite elements to capture different types of nonlinearity more appropriately. Any computer program capable of conducting nonlinear time domain dynamic analysis can be used, and the underlying risk can be estimated with the help of several dozens or hundreds of deterministic finite element analyses, providing an alternative to the simulation approach. To aid comprehension of REDSET, numerous illustrative examples and solution strategies are presented in each chapter. Written by award-winning thought leaders from academia and professional practice, the following sample topics are included: Fundamentals of reliability assessment including set theory, modeling of uncertainty, the risk-based engineering design concept, and the evolution of reliability assessment methods Implicit performance or limit state functions are expressed explicitly by the extensively modified response surface method with several new experimental designs Uncertainty quantification procedures with multiple time histories for different dynamic loadings, illustrated with examples The underlying risk can be estimated using any computer program representing structures by finite elements with only few deterministic analyses REDSET is demonstrated to be an alternative to the classical random vibration concept and the basic simulation procedure for risk estimation purposes REDSET changes the current engineering design paradigm. Instead of conducting one deterministic analysis, a design can be made more dynamic load tolerant, resilient, and sustainable with the help of a few additional deterministic analyses This book describing REDSET is expected to complement two other books published by Wiley and authored by Haldar and Mahadevan: Probability, Reliability and Statistical Methods in Engineering Design and Reliability Assessment Using Stochastic Finite Element Analysis. The book is perfect to use as a supplementary resource for upper-level undergraduate and graduate level courses on reliability and risk-based design.
Publisher: John Wiley & Sons
ISBN: 1119901650
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
RELIABILITY EVALUATION OF DYNAMIC SYSTEMS EXCITED IN TIME DOMAIN – REDSET Multi-disciplinary approach to structural reliability analysis for dynamic loadings offering a practical alternative to the random vibration theory and simulation Reliability Evaluation of Dynamic Systems Excited in Time Domain – REDSET is a multidisciplinary concept that enables readers to estimate the underlying risk that could not be solved in the past. The major hurdle was that the required limit state functions (LSFs) are implicit in nature and the lack of progress in the reliability evaluation methods for this class of problems. The most sophisticated deterministic analysis requires that the dynamic loadings must be applied in the time domain. To satisfy these requirements, REDSET is developed. Different types and forms of dynamic loadings including seismic, wind-induced wave, and thermomechanical loading in the form of heating and cooling of solder balls used in computer chips are considered to validate REDSET. Time domain representations and the uncertainty quantification procedures including the use of multiple time histories are proposed and demonstrated for all these dynamic loadings. Both onshore and offshore structures are used for validation. The potential of REDSET is demonstrated for implementing the Performance Based Seismic Design (PBSD) concept now under development in the United States. For wider multidisciplinary applications, structures are represented by finite elements to capture different types of nonlinearity more appropriately. Any computer program capable of conducting nonlinear time domain dynamic analysis can be used, and the underlying risk can be estimated with the help of several dozens or hundreds of deterministic finite element analyses, providing an alternative to the simulation approach. To aid comprehension of REDSET, numerous illustrative examples and solution strategies are presented in each chapter. Written by award-winning thought leaders from academia and professional practice, the following sample topics are included: Fundamentals of reliability assessment including set theory, modeling of uncertainty, the risk-based engineering design concept, and the evolution of reliability assessment methods Implicit performance or limit state functions are expressed explicitly by the extensively modified response surface method with several new experimental designs Uncertainty quantification procedures with multiple time histories for different dynamic loadings, illustrated with examples The underlying risk can be estimated using any computer program representing structures by finite elements with only few deterministic analyses REDSET is demonstrated to be an alternative to the classical random vibration concept and the basic simulation procedure for risk estimation purposes REDSET changes the current engineering design paradigm. Instead of conducting one deterministic analysis, a design can be made more dynamic load tolerant, resilient, and sustainable with the help of a few additional deterministic analyses This book describing REDSET is expected to complement two other books published by Wiley and authored by Haldar and Mahadevan: Probability, Reliability and Statistical Methods in Engineering Design and Reliability Assessment Using Stochastic Finite Element Analysis. The book is perfect to use as a supplementary resource for upper-level undergraduate and graduate level courses on reliability and risk-based design.
Structural Dynamic Systems Computational Techniques and Optimization
Author: Cornelius T. Leondes
Publisher: Routledge
ISBN: 1351413244
Category : Mathematics
Languages : en
Pages : 335
Book Description
The finite element, an approximation method for solving differential equations of mathematical physics, is a highly effective technique in the analysis and design, or synthesis, of structural dynamic systems. Starting from the system differential equations and its boundary conditions, what is referred to as a weak form of the problem (elaborated in the text) is developed in a variational sense. This variational statement is used to define elemental properties that may be written as matrices and vectors as well as to identify primary and secondary boundaries and all possible boundary conditions. Specific equilibrium problems are also solved. This book clearly reveals the effectiveness and great significance of the finite element method available and the essential role it will play in the future as further development occurs.
Publisher: Routledge
ISBN: 1351413244
Category : Mathematics
Languages : en
Pages : 335
Book Description
The finite element, an approximation method for solving differential equations of mathematical physics, is a highly effective technique in the analysis and design, or synthesis, of structural dynamic systems. Starting from the system differential equations and its boundary conditions, what is referred to as a weak form of the problem (elaborated in the text) is developed in a variational sense. This variational statement is used to define elemental properties that may be written as matrices and vectors as well as to identify primary and secondary boundaries and all possible boundary conditions. Specific equilibrium problems are also solved. This book clearly reveals the effectiveness and great significance of the finite element method available and the essential role it will play in the future as further development occurs.
High-Rise Buildings under Multi-Hazard Environment
Author: Mingfeng Huang
Publisher: Springer
ISBN: 9811017441
Category : Technology & Engineering
Languages : en
Pages : 251
Book Description
This book discusses performance-based seismic and wind-resistant design for high-rise building structures, with a particular focus on establishing an integrated approach for performance-based wind engineering, which is currently less advanced than seismic engineering. This book also provides a state-of-the-art review of numerous methodologies, including computational fluid dynamics (CFD), extreme value analysis, structural optimization, vibration control, pushover analysis, response spectrum analysis, modal parameter identification for the assessment of the wind-resistant and seismic performance of tall buildings in the design stage and actual tall buildings in use. Several new structural optimization methods, including the augmented optimality criteria method, have been developed and employed in the context of performance-based design. This book is a valuable resource for students, researchers and engineers in the field of civil and structural engineering.
Publisher: Springer
ISBN: 9811017441
Category : Technology & Engineering
Languages : en
Pages : 251
Book Description
This book discusses performance-based seismic and wind-resistant design for high-rise building structures, with a particular focus on establishing an integrated approach for performance-based wind engineering, which is currently less advanced than seismic engineering. This book also provides a state-of-the-art review of numerous methodologies, including computational fluid dynamics (CFD), extreme value analysis, structural optimization, vibration control, pushover analysis, response spectrum analysis, modal parameter identification for the assessment of the wind-resistant and seismic performance of tall buildings in the design stage and actual tall buildings in use. Several new structural optimization methods, including the augmented optimality criteria method, have been developed and employed in the context of performance-based design. This book is a valuable resource for students, researchers and engineers in the field of civil and structural engineering.