Author: Milton Ohring
Publisher: Academic Press
ISBN: 0080575528
Category : Technology & Engineering
Languages : en
Pages : 759
Book Description
Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites
Reliability and Failure of Electronic Materials and Devices
Author: Milton Ohring
Publisher: Academic Press
ISBN: 0080575528
Category : Technology & Engineering
Languages : en
Pages : 759
Book Description
Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites
Publisher: Academic Press
ISBN: 0080575528
Category : Technology & Engineering
Languages : en
Pages : 759
Book Description
Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites
Reliability of Semiconductor Lasers and Optoelectronic Devices
Author: Robert Herrick
Publisher: Woodhead Publishing
ISBN: 0128192550
Category : Technology & Engineering
Languages : en
Pages : 336
Book Description
Reliability of Semiconductor Lasers and Optoelectronic Devices simplifies complex concepts of optoelectronics reliability with approachable introductory chapters and a focus on real-world applications. This book provides a brief look at the fundamentals of laser diodes, introduces reliability qualification, and then presents real-world case studies discussing the principles of reliability and what occurs when these rules are broken. Then this book comprehensively looks at optoelectronics devices and the defects that cause premature failure in them and how to control those defects. Key materials and devices are reviewed including silicon photonics, vertical-cavity surface-emitting lasers (VCSELs), InGaN LEDs and lasers, and AlGaN LEDs, covering the majority of optoelectronic devices that we use in our everyday lives, powering the Internet, telecommunication, solid-state lighting, illuminators, and many other applications. This book features contributions from experts in industry and academia working in these areas and includes numerous practical examples and case studies.This book is suitable for new entrants to the field of optoelectronics working in R&D. - Includes case studies and numerous examples showing best practices and common mistakes affecting optoelectronics reliability written by experts working in the industry - Features the first wide-ranging and comprehensive overview of fiber optics reliability engineering, covering all elements of the practice from building a reliability laboratory, qualifying new products, to improving reliability on mature products - Provides a look at the reliability issues and failure mechanisms for silicon photonics, VCSELs, InGaN LEDs and lasers, AIGaN LEDs, and more
Publisher: Woodhead Publishing
ISBN: 0128192550
Category : Technology & Engineering
Languages : en
Pages : 336
Book Description
Reliability of Semiconductor Lasers and Optoelectronic Devices simplifies complex concepts of optoelectronics reliability with approachable introductory chapters and a focus on real-world applications. This book provides a brief look at the fundamentals of laser diodes, introduces reliability qualification, and then presents real-world case studies discussing the principles of reliability and what occurs when these rules are broken. Then this book comprehensively looks at optoelectronics devices and the defects that cause premature failure in them and how to control those defects. Key materials and devices are reviewed including silicon photonics, vertical-cavity surface-emitting lasers (VCSELs), InGaN LEDs and lasers, and AlGaN LEDs, covering the majority of optoelectronic devices that we use in our everyday lives, powering the Internet, telecommunication, solid-state lighting, illuminators, and many other applications. This book features contributions from experts in industry and academia working in these areas and includes numerous practical examples and case studies.This book is suitable for new entrants to the field of optoelectronics working in R&D. - Includes case studies and numerous examples showing best practices and common mistakes affecting optoelectronics reliability written by experts working in the industry - Features the first wide-ranging and comprehensive overview of fiber optics reliability engineering, covering all elements of the practice from building a reliability laboratory, qualifying new products, to improving reliability on mature products - Provides a look at the reliability issues and failure mechanisms for silicon photonics, VCSELs, InGaN LEDs and lasers, AIGaN LEDs, and more
Materials and Reliability Handbook for Semiconductor Optical and Electron Devices
Author: Osamu Ueda
Publisher: Springer Science & Business Media
ISBN: 1461443377
Category : Science
Languages : en
Pages : 618
Book Description
Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and reliability, which allow accurate prediction of reliability as well as the design specifically for improved reliability. The Handbook emphasizes physical mechanisms rather than an electrical definition of reliability. Accelerated aging is useful only if the failure mechanism is known. The Handbook also focuses on voltage and current acceleration stress mechanisms.
Publisher: Springer Science & Business Media
ISBN: 1461443377
Category : Science
Languages : en
Pages : 618
Book Description
Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and reliability, which allow accurate prediction of reliability as well as the design specifically for improved reliability. The Handbook emphasizes physical mechanisms rather than an electrical definition of reliability. Accelerated aging is useful only if the failure mechanism is known. The Handbook also focuses on voltage and current acceleration stress mechanisms.
Semiconductor Device Reliability
Author: A. Christou
Publisher: Springer Science & Business Media
ISBN: 9400924828
Category : Technology & Engineering
Languages : en
Pages : 571
Book Description
This publication is a compilation of papers presented at the Semiconductor Device Reliabi lity Workshop sponsored by the NATO International Scientific Exchange Program. The Workshop was held in Crete, Greece from June 4 to June 9, 1989. The objective of the Workshop was to review and to further explore advances in the field of semiconductor reliability through invited paper presentations and discussions. The technical emphasis was on quality assurance and reliability of optoelectronic and high speed semiconductor devices. The primary support for the meeting was provided by the Scientific Affairs Division of NATO. We are indebted to NATO for their support and to Dr. Craig Sinclair, who admin isters this program. The chapters of this book follow the format and order of the sessions of the meeting. Thirty-six papers were presented and discussed during the five-day Workshop. In addi tion, two panel sessions were held, with audience participation, where the particularly controversial topics of bum-in and reliability modeling and prediction methods were dis cussed. A brief review of these sessions is presented in this book.
Publisher: Springer Science & Business Media
ISBN: 9400924828
Category : Technology & Engineering
Languages : en
Pages : 571
Book Description
This publication is a compilation of papers presented at the Semiconductor Device Reliabi lity Workshop sponsored by the NATO International Scientific Exchange Program. The Workshop was held in Crete, Greece from June 4 to June 9, 1989. The objective of the Workshop was to review and to further explore advances in the field of semiconductor reliability through invited paper presentations and discussions. The technical emphasis was on quality assurance and reliability of optoelectronic and high speed semiconductor devices. The primary support for the meeting was provided by the Scientific Affairs Division of NATO. We are indebted to NATO for their support and to Dr. Craig Sinclair, who admin isters this program. The chapters of this book follow the format and order of the sessions of the meeting. Thirty-six papers were presented and discussed during the five-day Workshop. In addi tion, two panel sessions were held, with audience participation, where the particularly controversial topics of bum-in and reliability modeling and prediction methods were dis cussed. A brief review of these sessions is presented in this book.
Failure Analysis
Author: Marius Bazu
Publisher: John Wiley & Sons
ISBN: 1119990009
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers need practical orientation around the complex procedures involved in failure analysis. This guide acts as a tool for all advanced techniques, their benefits and vital aspects of their use in a reliability programme. Using twelve complex case studies, the authors explain why failure analysis should be used with electronic components, when implementation is appropriate and methods for its successful use. Inside you will find detailed coverage on: a synergistic approach to failure modes and mechanisms, along with reliability physics and the failure analysis of materials, emphasizing the vital importance of cooperation between a product development team involved the reasons why failure analysis is an important tool for improving yield and reliability by corrective actions the design stage, highlighting the ‘concurrent engineering' approach and DfR (Design for Reliability) failure analysis during fabrication, covering reliability monitoring, process monitors and package reliability reliability resting after fabrication, including reliability assessment at this stage and corrective actions a large variety of methods, such as electrical methods, thermal methods, optical methods, electron microscopy, mechanical methods, X-Ray methods, spectroscopic, acoustical, and laser methods new challenges in reliability testing, such as its use in microsystems and nanostructures This practical yet comprehensive reference is useful for manufacturers and engineers involved in the design, fabrication and testing of electronic components, devices, ICs and electronic systems, as well as for users of components in complex systems wanting to discover the roots of the reliability flaws for their products.
Publisher: John Wiley & Sons
ISBN: 1119990009
Category : Technology & Engineering
Languages : en
Pages : 372
Book Description
Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers need practical orientation around the complex procedures involved in failure analysis. This guide acts as a tool for all advanced techniques, their benefits and vital aspects of their use in a reliability programme. Using twelve complex case studies, the authors explain why failure analysis should be used with electronic components, when implementation is appropriate and methods for its successful use. Inside you will find detailed coverage on: a synergistic approach to failure modes and mechanisms, along with reliability physics and the failure analysis of materials, emphasizing the vital importance of cooperation between a product development team involved the reasons why failure analysis is an important tool for improving yield and reliability by corrective actions the design stage, highlighting the ‘concurrent engineering' approach and DfR (Design for Reliability) failure analysis during fabrication, covering reliability monitoring, process monitors and package reliability reliability resting after fabrication, including reliability assessment at this stage and corrective actions a large variety of methods, such as electrical methods, thermal methods, optical methods, electron microscopy, mechanical methods, X-Ray methods, spectroscopic, acoustical, and laser methods new challenges in reliability testing, such as its use in microsystems and nanostructures This practical yet comprehensive reference is useful for manufacturers and engineers involved in the design, fabrication and testing of electronic components, devices, ICs and electronic systems, as well as for users of components in complex systems wanting to discover the roots of the reliability flaws for their products.
Modern Power Electronic Devices
Author: Francesco Iannuzzo
Publisher: Energy Engineering
ISBN: 9781785619175
Category : Technology & Engineering
Languages : en
Pages : 504
Book Description
Power devices are key to modern power systems, performing functions such as inverting and changing voltages, buffering and switching. Following a device-centric approach, this book covers power electronic applications, semiconductor physics, materials science, application engineering, and key technologies such as MOSFET, IGBT and WBG.
Publisher: Energy Engineering
ISBN: 9781785619175
Category : Technology & Engineering
Languages : en
Pages : 504
Book Description
Power devices are key to modern power systems, performing functions such as inverting and changing voltages, buffering and switching. Following a device-centric approach, this book covers power electronic applications, semiconductor physics, materials science, application engineering, and key technologies such as MOSFET, IGBT and WBG.
Reliability Characterisation of Electrical and Electronic Systems
Author: Jonathan Swingler
Publisher: Woodhead Publishing
ISBN: 9780081029633
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
The book charts how reliability engineering has moved from the use of sometimes arbitrary standards to an empirical scientific approach of understanding operating conditions, failure mechanisms, the need for testing for a more realistic characterisation and, new for the second edition, includes the monitoring of performance/robustness in the field. Reliability Characterisation of Electrical and Electronic Systems brings together a number of experts and key players in the discipline to concisely present the fundamentals and background to reliability theory, elaborate on the current thinking and developments behind reliability characterisation, and give a detailed account of emerging issues across a wide range of applications. The second edition has a new section titled Reliability Condition Monitoring and Prognostics for Specific Application which provides a guide to critical issues in key industrial sectors such as automotive and aerospace. There are also new chapters on areas of growing importance such as reliability methods in high-temperature electronics and reliability and testing of electric aircraft power systems. Reviews emerging areas of importance such as reliability methods in high-temperature electronics and reliability testing of electric vehicles Looks at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability Facilitates a greater understanding of operating conditions, failure mechanisms and the need for testing
Publisher: Woodhead Publishing
ISBN: 9780081029633
Category : Technology & Engineering
Languages : en
Pages : 350
Book Description
The book charts how reliability engineering has moved from the use of sometimes arbitrary standards to an empirical scientific approach of understanding operating conditions, failure mechanisms, the need for testing for a more realistic characterisation and, new for the second edition, includes the monitoring of performance/robustness in the field. Reliability Characterisation of Electrical and Electronic Systems brings together a number of experts and key players in the discipline to concisely present the fundamentals and background to reliability theory, elaborate on the current thinking and developments behind reliability characterisation, and give a detailed account of emerging issues across a wide range of applications. The second edition has a new section titled Reliability Condition Monitoring and Prognostics for Specific Application which provides a guide to critical issues in key industrial sectors such as automotive and aerospace. There are also new chapters on areas of growing importance such as reliability methods in high-temperature electronics and reliability and testing of electric aircraft power systems. Reviews emerging areas of importance such as reliability methods in high-temperature electronics and reliability testing of electric vehicles Looks at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability Facilitates a greater understanding of operating conditions, failure mechanisms and the need for testing
Electronic Thin-Film Reliability
Author: King-Ning Tu
Publisher: Cambridge University Press
ISBN: 1139492705
Category : Technology & Engineering
Languages : en
Pages : 413
Book Description
Thin films are widely used in the electronic device industry. As the trend for miniaturization of electronic devices moves into the nanoscale domain, the reliability of thin films becomes an increasing concern. Building on the author's previous book, Electronic Thin Film Science by Tu, Mayer and Feldman, and based on a graduate course at UCLA given by the author, this new book focuses on reliability science and the processing of thin films. Early chapters address fundamental topics in thin film processes and reliability, including deposition, surface energy and atomic diffusion, before moving onto systematically explain irreversible processes in interconnect and packaging technologies. Describing electromigration, thermomigration and stress migration, with a closing chapter dedicated to failure analysis, the reader will come away with a complete theoretical and practical understanding of electronic thin film reliability. Kept mathematically simple, with real-world examples, this book is ideal for graduate students, researchers and practitioners.
Publisher: Cambridge University Press
ISBN: 1139492705
Category : Technology & Engineering
Languages : en
Pages : 413
Book Description
Thin films are widely used in the electronic device industry. As the trend for miniaturization of electronic devices moves into the nanoscale domain, the reliability of thin films becomes an increasing concern. Building on the author's previous book, Electronic Thin Film Science by Tu, Mayer and Feldman, and based on a graduate course at UCLA given by the author, this new book focuses on reliability science and the processing of thin films. Early chapters address fundamental topics in thin film processes and reliability, including deposition, surface energy and atomic diffusion, before moving onto systematically explain irreversible processes in interconnect and packaging technologies. Describing electromigration, thermomigration and stress migration, with a closing chapter dedicated to failure analysis, the reader will come away with a complete theoretical and practical understanding of electronic thin film reliability. Kept mathematically simple, with real-world examples, this book is ideal for graduate students, researchers and practitioners.
Electronic Materials Handbook
Author:
Publisher: ASM International
ISBN: 9780871702852
Category : Technology & Engineering
Languages : en
Pages : 1234
Book Description
Volume 1: Packaging is an authoritative reference source of practical information for the design or process engineer who must make informed day-to-day decisions about the materials and processes of microelectronic packaging. Its 117 articles offer the collective knowledge, wisdom, and judgement of 407 microelectronics packaging experts-authors, co-authors, and reviewers-representing 192 companies, universities, laboratories, and other organizations. This is the inaugural volume of ASMAs all-new ElectronicMaterials Handbook series, designed to be the Metals Handbook of electronics technology. In over 65 years of publishing the Metals Handbook, ASM has developed a unique editorial method of compiling large technical reference books. ASMAs access to leading materials technology experts enables to organize these books on an industry consensus basis. Behind every article. Is an author who is a top expert in its specific subject area. This multi-author approach ensures the best, most timely information throughout. Individually selected panels of 5 and 6 peers review each article for technical accuracy, generic point of view, and completeness.Volumes in the Electronic Materials Handbook series are multidisciplinary, to reflect industry practice applied in integrating multiple technology disciplines necessary to any program in advanced electronics. Volume 1: Packaging focusing on the middle level of the electronics technology size spectrum, offers the greatest practical value to the largest and broadest group of users. Future volumes in the series will address topics on larger (integrated electronic assemblies) and smaller (semiconductor materials and devices) size levels.
Publisher: ASM International
ISBN: 9780871702852
Category : Technology & Engineering
Languages : en
Pages : 1234
Book Description
Volume 1: Packaging is an authoritative reference source of practical information for the design or process engineer who must make informed day-to-day decisions about the materials and processes of microelectronic packaging. Its 117 articles offer the collective knowledge, wisdom, and judgement of 407 microelectronics packaging experts-authors, co-authors, and reviewers-representing 192 companies, universities, laboratories, and other organizations. This is the inaugural volume of ASMAs all-new ElectronicMaterials Handbook series, designed to be the Metals Handbook of electronics technology. In over 65 years of publishing the Metals Handbook, ASM has developed a unique editorial method of compiling large technical reference books. ASMAs access to leading materials technology experts enables to organize these books on an industry consensus basis. Behind every article. Is an author who is a top expert in its specific subject area. This multi-author approach ensures the best, most timely information throughout. Individually selected panels of 5 and 6 peers review each article for technical accuracy, generic point of view, and completeness.Volumes in the Electronic Materials Handbook series are multidisciplinary, to reflect industry practice applied in integrating multiple technology disciplines necessary to any program in advanced electronics. Volume 1: Packaging focusing on the middle level of the electronics technology size spectrum, offers the greatest practical value to the largest and broadest group of users. Future volumes in the series will address topics on larger (integrated electronic assemblies) and smaller (semiconductor materials and devices) size levels.
Power Electronic Packaging
Author: Yong Liu
Publisher: Springer Science & Business Media
ISBN: 1461410533
Category : Technology & Engineering
Languages : en
Pages : 606
Book Description
Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can drive continued advancements, particularly in thermal management, usability, efficiency, reliability and overall cost of power semiconductor solutions.
Publisher: Springer Science & Business Media
ISBN: 1461410533
Category : Technology & Engineering
Languages : en
Pages : 606
Book Description
Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can drive continued advancements, particularly in thermal management, usability, efficiency, reliability and overall cost of power semiconductor solutions.