Author: William H Klink
Publisher: Morgan & Claypool Publishers
ISBN: 1681748916
Category : Science
Languages : en
Pages : 108
Book Description
The first version of quantum theory, developed in the mid 1920's, is what is called nonrelativistic quantum theory; it is based on a form of relativity which, in a previous volume, was called Newton relativity. But quickly after this first development, it was realized that, in order to account for high energy phenomena such as particle creation, it was necessary to develop a quantum theory based on Einstein relativity. This in turn led to the development of relativistic quantum field theory, which is an intrinsically many-body theory. But this is not the only possibility for a relativistic quantum theory. In this book we take the point of view of a particle theory, based on the irreducible representations of the Poincare group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; we develop what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A central issue in any relativistic quantum theory is how to introduce interactions without spoiling relativistic invariance. We show that interactions can be incorporated in a mass operator, in such a way that relativistic invariance is maintained. Surprisingly for a relativistic theory, such a construction allows for instantaneous interactions; in addition, dynamical particle exchange and particle production can be included in a multichannel formulation of the mass operator. For systems of more than two particles, however, straightforward application of such a construction leads to the undesirable property that clusters of widely separated particles continue to interact with one another, even if the interactions between the individual particles are of short range. A significant part of this volume deals with the solution of this problem. Since relativistic quantum mechanics is not as well-known as relativistic quantum field theory, a chapter is devoted to applications of point form quantum mechanics to nuclear physics; in particular we show how constituent quark models can be used to derive electromagnetic and other properties of hadrons.
Relativity, Symmetry, and the Structure of Quantum Theory, Volume 2
Author: William H Klink
Publisher: Morgan & Claypool Publishers
ISBN: 1681748916
Category : Science
Languages : en
Pages : 108
Book Description
The first version of quantum theory, developed in the mid 1920's, is what is called nonrelativistic quantum theory; it is based on a form of relativity which, in a previous volume, was called Newton relativity. But quickly after this first development, it was realized that, in order to account for high energy phenomena such as particle creation, it was necessary to develop a quantum theory based on Einstein relativity. This in turn led to the development of relativistic quantum field theory, which is an intrinsically many-body theory. But this is not the only possibility for a relativistic quantum theory. In this book we take the point of view of a particle theory, based on the irreducible representations of the Poincare group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; we develop what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A central issue in any relativistic quantum theory is how to introduce interactions without spoiling relativistic invariance. We show that interactions can be incorporated in a mass operator, in such a way that relativistic invariance is maintained. Surprisingly for a relativistic theory, such a construction allows for instantaneous interactions; in addition, dynamical particle exchange and particle production can be included in a multichannel formulation of the mass operator. For systems of more than two particles, however, straightforward application of such a construction leads to the undesirable property that clusters of widely separated particles continue to interact with one another, even if the interactions between the individual particles are of short range. A significant part of this volume deals with the solution of this problem. Since relativistic quantum mechanics is not as well-known as relativistic quantum field theory, a chapter is devoted to applications of point form quantum mechanics to nuclear physics; in particular we show how constituent quark models can be used to derive electromagnetic and other properties of hadrons.
Publisher: Morgan & Claypool Publishers
ISBN: 1681748916
Category : Science
Languages : en
Pages : 108
Book Description
The first version of quantum theory, developed in the mid 1920's, is what is called nonrelativistic quantum theory; it is based on a form of relativity which, in a previous volume, was called Newton relativity. But quickly after this first development, it was realized that, in order to account for high energy phenomena such as particle creation, it was necessary to develop a quantum theory based on Einstein relativity. This in turn led to the development of relativistic quantum field theory, which is an intrinsically many-body theory. But this is not the only possibility for a relativistic quantum theory. In this book we take the point of view of a particle theory, based on the irreducible representations of the Poincare group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; we develop what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A central issue in any relativistic quantum theory is how to introduce interactions without spoiling relativistic invariance. We show that interactions can be incorporated in a mass operator, in such a way that relativistic invariance is maintained. Surprisingly for a relativistic theory, such a construction allows for instantaneous interactions; in addition, dynamical particle exchange and particle production can be included in a multichannel formulation of the mass operator. For systems of more than two particles, however, straightforward application of such a construction leads to the undesirable property that clusters of widely separated particles continue to interact with one another, even if the interactions between the individual particles are of short range. A significant part of this volume deals with the solution of this problem. Since relativistic quantum mechanics is not as well-known as relativistic quantum field theory, a chapter is devoted to applications of point form quantum mechanics to nuclear physics; in particular we show how constituent quark models can be used to derive electromagnetic and other properties of hadrons.
Relativity, Symmetry and the Structure of the Quantum Theory
Author: William H. Klink
Publisher: Morgan & Claypool Publishers
ISBN: 1627056246
Category : Science
Languages : en
Pages : 95
Book Description
Quantum theory is one of the most successful of all physical theories. Our everyday world is dominated by devices that function because of knowledge of the quantum world. Yet many, physicists and non-physicists alike, find the theory which explains the beh
Publisher: Morgan & Claypool Publishers
ISBN: 1627056246
Category : Science
Languages : en
Pages : 95
Book Description
Quantum theory is one of the most successful of all physical theories. Our everyday world is dominated by devices that function because of knowledge of the quantum world. Yet many, physicists and non-physicists alike, find the theory which explains the beh
A First Course on Symmetry, Special Relativity and Quantum Mechanics
Author: Gabor Kunstatter
Publisher: Springer Nature
ISBN: 3030554201
Category : Science
Languages : en
Pages : 410
Book Description
This book provides an in-depth and accessible description of special relativity and quantum mechanics which together form the foundation of 21st century physics. A novel aspect is that symmetry is given its rightful prominence as an integral part of this foundation. The book offers not only a conceptual understanding of symmetry, but also the mathematical tools necessary for quantitative analysis. As such, it provides a valuable precursor to more focused, advanced books on special relativity or quantum mechanics. Students are introduced to several topics not typically covered until much later in their education.These include space-time diagrams, the action principle, a proof of Noether's theorem, Lorentz vectors and tensors, symmetry breaking and general relativity. The book also provides extensive descriptions on topics of current general interest such as gravitational waves, cosmology, Bell's theorem, entanglement and quantum computing. Throughout the text, every opportunity is taken to emphasize the intimate connection between physics, symmetry and mathematics.The style remains light despite the rigorous and intensive content. The book is intended as a stand-alone or supplementary physics text for a one or two semester course for students who have completed an introductory calculus course and a first-year physics course that includes Newtonian mechanics and some electrostatics. Basic knowledge of linear algebra is useful but not essential, as all requisite mathematical background is provided either in the body of the text or in the Appendices. Interspersed through the text are well over a hundred worked examples and unsolved exercises for the student.
Publisher: Springer Nature
ISBN: 3030554201
Category : Science
Languages : en
Pages : 410
Book Description
This book provides an in-depth and accessible description of special relativity and quantum mechanics which together form the foundation of 21st century physics. A novel aspect is that symmetry is given its rightful prominence as an integral part of this foundation. The book offers not only a conceptual understanding of symmetry, but also the mathematical tools necessary for quantitative analysis. As such, it provides a valuable precursor to more focused, advanced books on special relativity or quantum mechanics. Students are introduced to several topics not typically covered until much later in their education.These include space-time diagrams, the action principle, a proof of Noether's theorem, Lorentz vectors and tensors, symmetry breaking and general relativity. The book also provides extensive descriptions on topics of current general interest such as gravitational waves, cosmology, Bell's theorem, entanglement and quantum computing. Throughout the text, every opportunity is taken to emphasize the intimate connection between physics, symmetry and mathematics.The style remains light despite the rigorous and intensive content. The book is intended as a stand-alone or supplementary physics text for a one or two semester course for students who have completed an introductory calculus course and a first-year physics course that includes Newtonian mechanics and some electrostatics. Basic knowledge of linear algebra is useful but not essential, as all requisite mathematical background is provided either in the body of the text or in the Appendices. Interspersed through the text are well over a hundred worked examples and unsolved exercises for the student.
Fundamental Mathematical Structures of Quantum Theory
Author: Valter Moretti
Publisher: Springer
ISBN: 3030183467
Category : Science
Languages : en
Pages : 345
Book Description
This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.
Publisher: Springer
ISBN: 3030183467
Category : Science
Languages : en
Pages : 345
Book Description
This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.
Symmetries in Quantum Physics
Author: U. Fano
Publisher: Elsevier
ISBN: 0080542174
Category : Science
Languages : en
Pages : 349
Book Description
This text focuses on the physics of symmetries, developing symmetries and transformations through concrete physical examples and contexts rather than presenting the information axiomatically, mathematically, and abstractly. Readers are introduced gradually to advanced mathematical procedures, including the Wigner and Racah algebras and their applications to various symmetry groups. The book also includes some of the latest research on the use of non-invariance and non-compact groups in the consideration of relativistic and many-particle problems of atoms and nuclei.This book is an updated replacement for the text Irreducible Tensorial Sets (Academic Press, 1959). Parts A and B of the present book grew out of occasional lectures in the intervening decades at the University of Chicago, where it became neccessary to update or elaborate upon certain points. Part C has been built more recently to deal with innovations and new information in the field of mathematical physics. The book as a whole develops the subject of symmetry from a physical point of view, allowing students and researchers to gain new insight on their subject. This book can be used both as a text and as a reference by students and scientists in the field.Adapts and extends the earlier Irreducible Tensor Sets (Academic Press, 1959) to classroom useExtends to multi-particle systems and relativityIncludes problems in each chapter for homework assignmentsEmbraces the latest research on non-invariance groups
Publisher: Elsevier
ISBN: 0080542174
Category : Science
Languages : en
Pages : 349
Book Description
This text focuses on the physics of symmetries, developing symmetries and transformations through concrete physical examples and contexts rather than presenting the information axiomatically, mathematically, and abstractly. Readers are introduced gradually to advanced mathematical procedures, including the Wigner and Racah algebras and their applications to various symmetry groups. The book also includes some of the latest research on the use of non-invariance and non-compact groups in the consideration of relativistic and many-particle problems of atoms and nuclei.This book is an updated replacement for the text Irreducible Tensorial Sets (Academic Press, 1959). Parts A and B of the present book grew out of occasional lectures in the intervening decades at the University of Chicago, where it became neccessary to update or elaborate upon certain points. Part C has been built more recently to deal with innovations and new information in the field of mathematical physics. The book as a whole develops the subject of symmetry from a physical point of view, allowing students and researchers to gain new insight on their subject. This book can be used both as a text and as a reference by students and scientists in the field.Adapts and extends the earlier Irreducible Tensor Sets (Academic Press, 1959) to classroom useExtends to multi-particle systems and relativityIncludes problems in each chapter for homework assignmentsEmbraces the latest research on non-invariance groups
Relativity, Symmetry and the Structure of Quantum Theory. I, Galilean Quantum Theory
Author: William H. Klink
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Spectral Theory and Quantum Mechanics
Author: Valter Moretti
Publisher: Springer
ISBN: 331970706X
Category : Mathematics
Languages : en
Pages : 962
Book Description
This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly."
Publisher: Springer
ISBN: 331970706X
Category : Mathematics
Languages : en
Pages : 962
Book Description
This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly."
Symmetry, Structure, and Spacetime
Author: Dean Rickles
Publisher: Elsevier
ISBN: 0444531165
Category : Science
Languages : en
Pages : 243
Book Description
In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational structure is what the physics is about. · Unified treatment of gauge symmetries and their relationship to ontology in physics · Brings philosophy of space and time into step with developments in modern physics · Argues against the received view on the implications of symmetries in physics · Provides elementary treatments of technical issues · Illustrates a novel defense of structuralism
Publisher: Elsevier
ISBN: 0444531165
Category : Science
Languages : en
Pages : 243
Book Description
In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational structure is what the physics is about. · Unified treatment of gauge symmetries and their relationship to ontology in physics · Brings philosophy of space and time into step with developments in modern physics · Argues against the received view on the implications of symmetries in physics · Provides elementary treatments of technical issues · Illustrates a novel defense of structuralism
Physics from Symmetry
Author: Jakob Schwichtenberg
Publisher: Springer
ISBN: 3319666312
Category : Science
Languages : en
Pages : 294
Book Description
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.
Publisher: Springer
ISBN: 3319666312
Category : Science
Languages : en
Pages : 294
Book Description
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.
The Conceptual Framework of Quantum Field Theory
Author: Anthony Duncan
Publisher: Oxford University Press
ISBN: 0191642207
Category : Science
Languages : en
Pages :
Book Description
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quantum-mechanical, relativistic and locality constraints. The central role of symmetries in relativistic quantum field theories is explored in the third section of the book, while in the final section, entitled "Scales", we explore in detail the feature of quantum field theories most critical for their enormous phenomenological success - the scale separation property embodied by the renormalization group properties of a theory defined by an effective local Lagrangian.
Publisher: Oxford University Press
ISBN: 0191642207
Category : Science
Languages : en
Pages :
Book Description
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quantum-mechanical, relativistic and locality constraints. The central role of symmetries in relativistic quantum field theories is explored in the third section of the book, while in the final section, entitled "Scales", we explore in detail the feature of quantum field theories most critical for their enormous phenomenological success - the scale separation property embodied by the renormalization group properties of a theory defined by an effective local Lagrangian.