Relative Nonhomogeneous Koszul Duality

Relative Nonhomogeneous Koszul Duality PDF Author: Leonid Positselski
Publisher: Springer Nature
ISBN: 3030895408
Category : Mathematics
Languages : en
Pages : 303

Get Book Here

Book Description
This research monograph develops the theory of relative nonhomogeneous Koszul duality. Koszul duality is a fundamental phenomenon in homological algebra and related areas of mathematics, such as algebraic topology, algebraic geometry, and representation theory. Koszul duality is a popular subject of contemporary research. This book, written by one of the world's leading experts in the area, includes the homogeneous and nonhomogeneous quadratic duality theory over a nonsemisimple, noncommutative base ring, the Poincare–Birkhoff–Witt theorem generalized to this context, and triangulated equivalences between suitable exotic derived categories of modules, curved DG comodules, and curved DG contramodules. The thematic example, meaning the classical duality between the ring of differential operators and the de Rham DG algebra of differential forms, involves some of the most important objects of study in the contemporary algebraic and differential geometry. For the first time in the history of Koszul duality the derived D-\Omega duality is included into a general framework. Examples highly relevant for algebraic and differential geometry are discussed in detail.

Relative Nonhomogeneous Koszul Duality

Relative Nonhomogeneous Koszul Duality PDF Author: Leonid Positselski
Publisher: Springer Nature
ISBN: 3030895408
Category : Mathematics
Languages : en
Pages : 303

Get Book Here

Book Description
This research monograph develops the theory of relative nonhomogeneous Koszul duality. Koszul duality is a fundamental phenomenon in homological algebra and related areas of mathematics, such as algebraic topology, algebraic geometry, and representation theory. Koszul duality is a popular subject of contemporary research. This book, written by one of the world's leading experts in the area, includes the homogeneous and nonhomogeneous quadratic duality theory over a nonsemisimple, noncommutative base ring, the Poincare–Birkhoff–Witt theorem generalized to this context, and triangulated equivalences between suitable exotic derived categories of modules, curved DG comodules, and curved DG contramodules. The thematic example, meaning the classical duality between the ring of differential operators and the de Rham DG algebra of differential forms, involves some of the most important objects of study in the contemporary algebraic and differential geometry. For the first time in the history of Koszul duality the derived D-\Omega duality is included into a general framework. Examples highly relevant for algebraic and differential geometry are discussed in detail.

Homological Algebra of Semimodules and Semicontramodules

Homological Algebra of Semimodules and Semicontramodules PDF Author: Leonid Positselski
Publisher: Springer Science & Business Media
ISBN: 303460436X
Category : Mathematics
Languages : en
Pages : 364

Get Book Here

Book Description
This book provides comprehensive coverage on semi-infinite homology and cohomology of associative algebraic structures. It features rich representation-theoretic and algebro-geometric examples and applications.

Two Kinds of Derived Categories, Koszul Duality, and Comodule-Contramodule Correspondence

Two Kinds of Derived Categories, Koszul Duality, and Comodule-Contramodule Correspondence PDF Author: Leonid Positselski
Publisher: American Mathematical Soc.
ISBN: 0821852965
Category : Mathematics
Languages : en
Pages : 146

Get Book Here

Book Description
"July 2011, volume 212, number 996 (first of 4 numbers)."

Lectures on Field Theory and Topology

Lectures on Field Theory and Topology PDF Author: Daniel S. Freed
Publisher: American Mathematical Soc.
ISBN: 1470452065
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.

Semidefinite Optimization and Convex Algebraic Geometry

Semidefinite Optimization and Convex Algebraic Geometry PDF Author: Grigoriy Blekherman
Publisher: SIAM
ISBN: 1611972280
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.

Formal Geometry and Bordism Operations

Formal Geometry and Bordism Operations PDF Author: Eric Peterson
Publisher: Cambridge University Press
ISBN: 1108428037
Category : Mathematics
Languages : en
Pages : 421

Get Book Here

Book Description
Delivers a broad, conceptual introduction to chromatic homotopy theory, focusing on contact with arithmetic and algebraic geometry.

Discriminants, Resultants, and Multidimensional Determinants

Discriminants, Resultants, and Multidimensional Determinants PDF Author: Israel M. Gelfand
Publisher: Springer Science & Business Media
ISBN: 0817647716
Category : Mathematics
Languages : en
Pages : 529

Get Book Here

Book Description
"This book revives and vastly expands the classical theory of resultants and discriminants. Most of the main new results of the book have been published earlier in more than a dozen joint papers of the authors. The book nicely complements these original papers with many examples illustrating both old and new results of the theory."—Mathematical Reviews

Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1052

Get Book Here

Book Description


Transformation Groups in Differential Geometry

Transformation Groups in Differential Geometry PDF Author: Shoshichi Kobayashi
Publisher: Springer Science & Business Media
ISBN: 3642619819
Category : Mathematics
Languages : en
Pages : 192

Get Book Here

Book Description
Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.

Quadratic Algebras

Quadratic Algebras PDF Author: Alexander Polishchuk
Publisher: American Mathematical Soc.
ISBN: 0821838342
Category : Mathematics
Languages : en
Pages : 176

Get Book Here

Book Description
This book introduces recent developments in the study of algebras defined by quadratic relations. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, non commutative geometry, $K$-theory, number theory, and non commutative linear algebra.The authors give a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincare-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes. The book can be used by graduate students and researchers working in algebra and any of the above-mentioned areas of mathematics.