Author: A. Asanov
Publisher: Walter de Gruyter
ISBN: 3110943239
Category : Mathematics
Languages : en
Pages : 277
Book Description
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Regularization, Uniqueness and Existence of Solutions of Volterra Equations of the First Kind
Author: A. Asanov
Publisher: Walter de Gruyter
ISBN: 3110943239
Category : Mathematics
Languages : en
Pages : 277
Book Description
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Publisher: Walter de Gruyter
ISBN: 3110943239
Category : Mathematics
Languages : en
Pages : 277
Book Description
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Ill-Posed Problems in Natural Sciences
Author: Andrei N. Tikhonov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3112313933
Category : Mathematics
Languages : en
Pages : 608
Book Description
No detailed description available for "Ill-Posed Problems in Natural Sciences".
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3112313933
Category : Mathematics
Languages : en
Pages : 608
Book Description
No detailed description available for "Ill-Posed Problems in Natural Sciences".
Volterra Integral Equations
Author: Hermann Brunner
Publisher: Cambridge University Press
ISBN: 1107098726
Category : Mathematics
Languages : en
Pages : 405
Book Description
See publisher description :
Publisher: Cambridge University Press
ISBN: 1107098726
Category : Mathematics
Languages : en
Pages : 405
Book Description
See publisher description :
Collocation Methods for Volterra Integral and Related Functional Differential Equations
Author: Hermann Brunner
Publisher: Cambridge University Press
ISBN: 9780521806152
Category : Mathematics
Languages : en
Pages : 620
Book Description
Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.
Publisher: Cambridge University Press
ISBN: 9780521806152
Category : Mathematics
Languages : en
Pages : 620
Book Description
Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.
Integral Dynamical Models: Singularities, Signals And Control
Author: Denis Sidorov
Publisher: World Scientific
ISBN: 9814619205
Category : Science
Languages : en
Pages : 258
Book Description
This volume provides a broad introduction to nonlinear integral dynamical models and new classes of evolutionary integral equations. It may be used as an advanced textbook by postgraduate students to study integral dynamical models and their applications in machine learning, electrical and electronic engineering, operations research and image analysis.
Publisher: World Scientific
ISBN: 9814619205
Category : Science
Languages : en
Pages : 258
Book Description
This volume provides a broad introduction to nonlinear integral dynamical models and new classes of evolutionary integral equations. It may be used as an advanced textbook by postgraduate students to study integral dynamical models and their applications in machine learning, electrical and electronic engineering, operations research and image analysis.
Nonclassical Linear Volterra Equations of the First Kind
Author: Anatoly S. Apartsyn
Publisher: Walter de Gruyter
ISBN: 3110944979
Category : Mathematics
Languages : en
Pages : 177
Book Description
This monograph deals with linear integra Volterra equations of the first kind with variable upper and lower limits of integration. Volterra operators of this type are the basic operators for integral models of dynamic systems.
Publisher: Walter de Gruyter
ISBN: 3110944979
Category : Mathematics
Languages : en
Pages : 177
Book Description
This monograph deals with linear integra Volterra equations of the first kind with variable upper and lower limits of integration. Volterra operators of this type are the basic operators for integral models of dynamic systems.
Scientia Magna, Vol. 8, No. 2, 2012
Author: Zhang Wenpeng
Publisher: Infinite Study
ISBN: 1599732696
Category :
Languages : en
Pages : 135
Book Description
Papers on Smarandache groupoids, a new class of generalized semiclosed sets using grills, Smarandache friendly numbers, a simple proof of the Sophie Germain primes problem along with the Mersenne primes problem and their connection to the Fermat's last conjecture, uniqueness of solutions of linear integral equations of the first kind with two variables, and similar topics. Contributors: A. A. Nithya, I. A. Rani, I. Arockiarani, V. Vinodhini, A. A. K. Majumdar, N. Subramanian, C. Murugesan, I. A. G. Nemron, S. I. Cenberci, B. Peker, P. Muralikrishna, M. Chandramouleeswaran, I. A. Rani, A. Karthika, and others.
Publisher: Infinite Study
ISBN: 1599732696
Category :
Languages : en
Pages : 135
Book Description
Papers on Smarandache groupoids, a new class of generalized semiclosed sets using grills, Smarandache friendly numbers, a simple proof of the Sophie Germain primes problem along with the Mersenne primes problem and their connection to the Fermat's last conjecture, uniqueness of solutions of linear integral equations of the first kind with two variables, and similar topics. Contributors: A. A. Nithya, I. A. Rani, I. Arockiarani, V. Vinodhini, A. A. K. Majumdar, N. Subramanian, C. Murugesan, I. A. G. Nemron, S. I. Cenberci, B. Peker, P. Muralikrishna, M. Chandramouleeswaran, I. A. Rani, A. Karthika, and others.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 812
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 812
Book Description
Analytical and Approximate Methods
Author: Hans-Peter Blatt
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 256
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 256
Book Description
Green's Functions and Boundary Value Problems
Author: Ivar Stakgold
Publisher: John Wiley & Sons
ISBN: 0470609702
Category : Mathematics
Languages : en
Pages : 883
Book Description
Praise for the Second Edition "This book is an excellent introduction to the wide field of boundary value problems."—Journal of Engineering Mathematics "No doubt this textbook will be useful for both students and research workers."—Mathematical Reviews A new edition of the highly-acclaimed guide to boundary value problems, now featuring modern computational methods and approximation theory Green's Functions and Boundary Value Problems, Third Edition continues the tradition of the two prior editions by providing mathematical techniques for the use of differential and integral equations to tackle important problems in applied mathematics, the physical sciences, and engineering. This new edition presents mathematical concepts and quantitative tools that are essential for effective use of modern computational methods that play a key role in the practical solution of boundary value problems. With a careful blend of theory and applications, the authors successfully bridge the gap between real analysis, functional analysis, nonlinear analysis, nonlinear partial differential equations, integral equations, approximation theory, and numerical analysis to provide a comprehensive foundation for understanding and analyzing core mathematical and computational modeling problems. Thoroughly updated and revised to reflect recent developments, the book includes an extensive new chapter on the modern tools of computational mathematics for boundary value problems. The Third Edition features numerous new topics, including: Nonlinear analysis tools for Banach spaces Finite element and related discretizations Best and near-best approximation in Banach spaces Iterative methods for discretized equations Overview of Sobolev and Besov space linear Methods for nonlinear equations Applications to nonlinear elliptic equations In addition, various topics have been substantially expanded, and new material on weak derivatives and Sobolev spaces, the Hahn-Banach theorem, reflexive Banach spaces, the Banach Schauder and Banach-Steinhaus theorems, and the Lax-Milgram theorem has been incorporated into the book. New and revised exercises found throughout allow readers to develop their own problem-solving skills, and the updated bibliographies in each chapter provide an extensive resource for new and emerging research and applications. With its careful balance of mathematics and meaningful applications, Green's Functions and Boundary Value Problems, Third Edition is an excellent book for courses on applied analysis and boundary value problems in partial differential equations at the graduate level. It is also a valuable reference for mathematicians, physicists, engineers, and scientists who use applied mathematics in their everyday work.
Publisher: John Wiley & Sons
ISBN: 0470609702
Category : Mathematics
Languages : en
Pages : 883
Book Description
Praise for the Second Edition "This book is an excellent introduction to the wide field of boundary value problems."—Journal of Engineering Mathematics "No doubt this textbook will be useful for both students and research workers."—Mathematical Reviews A new edition of the highly-acclaimed guide to boundary value problems, now featuring modern computational methods and approximation theory Green's Functions and Boundary Value Problems, Third Edition continues the tradition of the two prior editions by providing mathematical techniques for the use of differential and integral equations to tackle important problems in applied mathematics, the physical sciences, and engineering. This new edition presents mathematical concepts and quantitative tools that are essential for effective use of modern computational methods that play a key role in the practical solution of boundary value problems. With a careful blend of theory and applications, the authors successfully bridge the gap between real analysis, functional analysis, nonlinear analysis, nonlinear partial differential equations, integral equations, approximation theory, and numerical analysis to provide a comprehensive foundation for understanding and analyzing core mathematical and computational modeling problems. Thoroughly updated and revised to reflect recent developments, the book includes an extensive new chapter on the modern tools of computational mathematics for boundary value problems. The Third Edition features numerous new topics, including: Nonlinear analysis tools for Banach spaces Finite element and related discretizations Best and near-best approximation in Banach spaces Iterative methods for discretized equations Overview of Sobolev and Besov space linear Methods for nonlinear equations Applications to nonlinear elliptic equations In addition, various topics have been substantially expanded, and new material on weak derivatives and Sobolev spaces, the Hahn-Banach theorem, reflexive Banach spaces, the Banach Schauder and Banach-Steinhaus theorems, and the Lax-Milgram theorem has been incorporated into the book. New and revised exercises found throughout allow readers to develop their own problem-solving skills, and the updated bibliographies in each chapter provide an extensive resource for new and emerging research and applications. With its careful balance of mathematics and meaningful applications, Green's Functions and Boundary Value Problems, Third Edition is an excellent book for courses on applied analysis and boundary value problems in partial differential equations at the graduate level. It is also a valuable reference for mathematicians, physicists, engineers, and scientists who use applied mathematics in their everyday work.