Author: Xinming Zhao
Publisher:
ISBN:
Category : Klein-Gordon equation
Languages : en
Pages : 186
Book Description
Regularity and Stability for Periodic Solutions to Nonlinear Klein- Gordon and Schrödinger Equations
Author: Xinming Zhao
Publisher:
ISBN:
Category : Klein-Gordon equation
Languages : en
Pages : 186
Book Description
Publisher:
ISBN:
Category : Klein-Gordon equation
Languages : en
Pages : 186
Book Description
Global Solutions of Nonlinear Schrodinger Equations
Author: Jean Bourgain
Publisher: American Mathematical Soc.
ISBN: 0821819194
Category : Mathematics
Languages : en
Pages : 193
Book Description
This volume presents recent progress in the theory of nonlinear dispersive equations, primarily the nonlinear Schrodinger (NLS) equation. The Cauchy problem for defocusing NLS with critical nonlinearity is discussed. New techniques and results are described on global existence and properties of solutions with Large Cauchy data. Current research in harmonic analysis around Strichartz's inequalities and its relevance to nonlinear PDE is presented and several topics in NLS theory on bounded domains are reviewed. Using the NLS as an example, the book offers comprehensive insight on current research related to dispersive equations and Hamiltonian PDEs.
Publisher: American Mathematical Soc.
ISBN: 0821819194
Category : Mathematics
Languages : en
Pages : 193
Book Description
This volume presents recent progress in the theory of nonlinear dispersive equations, primarily the nonlinear Schrodinger (NLS) equation. The Cauchy problem for defocusing NLS with critical nonlinearity is discussed. New techniques and results are described on global existence and properties of solutions with Large Cauchy data. Current research in harmonic analysis around Strichartz's inequalities and its relevance to nonlinear PDE is presented and several topics in NLS theory on bounded domains are reviewed. Using the NLS as an example, the book offers comprehensive insight on current research related to dispersive equations and Hamiltonian PDEs.
Visions in Mathematics
Author: Noga Alon
Publisher: Springer Science & Business Media
ISBN: 303460422X
Category : Mathematics
Languages : en
Pages : 454
Book Description
"Visions in Mathematics - Towards 2000" was one of the most remarkable mathematical meetings in recent years. It was held in Tel Aviv from August 25th to September 3rd, 1999, and united some of the leading mathematicians worldwide. The goals of the conference were to discuss the importance, the methods, the past and the future of mathematics as we enter the 21st century and to consider the connection between mathematics and related areas. The aims of the conference are reflected in the present set of survey articles, documenting the state of art and future prospects in many branches of mathematics of current interest. This is the first part of a two-volume set that will serve any research mathematician or advanced student as an overview and guideline through the multifaceted body of mathematical research in the present and near future.
Publisher: Springer Science & Business Media
ISBN: 303460422X
Category : Mathematics
Languages : en
Pages : 454
Book Description
"Visions in Mathematics - Towards 2000" was one of the most remarkable mathematical meetings in recent years. It was held in Tel Aviv from August 25th to September 3rd, 1999, and united some of the leading mathematicians worldwide. The goals of the conference were to discuss the importance, the methods, the past and the future of mathematics as we enter the 21st century and to consider the connection between mathematics and related areas. The aims of the conference are reflected in the present set of survey articles, documenting the state of art and future prospects in many branches of mathematics of current interest. This is the first part of a two-volume set that will serve any research mathematician or advanced student as an overview and guideline through the multifaceted body of mathematical research in the present and near future.
Nonlinear Klein-gordon And Schrodinger Systems: Theory And Applications
Author: Luis Vazquez
Publisher: World Scientific
ISBN: 981454809X
Category :
Languages : en
Pages : 382
Book Description
This is the first of two Euroconferences aimed at addressing the issues of Nonlinearity and Disorder. The 1995 Euroconference was devoted to the mathematical, numerical and experimental studies related to the Klein-Gordon and Schrödinger systems. The Euroconference was organized around main lectures in each area to introduce the main concepts and stimulate discussions. The mathematical studies covered the functional anlaysis and stochastic techniques applied to the general Klein-Gordon and Schrödinger wave equations. Also a panoramic view of the numerical schemes was presented to simulate the above equations, as well as an overview of the applications of such systems in the areas of condensed matter, optical physics, new materials and biophysics. Special attention was devoted to the discrete Schrödinger and Klein-Gordon systems and their applications.
Publisher: World Scientific
ISBN: 981454809X
Category :
Languages : en
Pages : 382
Book Description
This is the first of two Euroconferences aimed at addressing the issues of Nonlinearity and Disorder. The 1995 Euroconference was devoted to the mathematical, numerical and experimental studies related to the Klein-Gordon and Schrödinger systems. The Euroconference was organized around main lectures in each area to introduce the main concepts and stimulate discussions. The mathematical studies covered the functional anlaysis and stochastic techniques applied to the general Klein-Gordon and Schrödinger wave equations. Also a panoramic view of the numerical schemes was presented to simulate the above equations, as well as an overview of the applications of such systems in the areas of condensed matter, optical physics, new materials and biophysics. Special attention was devoted to the discrete Schrödinger and Klein-Gordon systems and their applications.
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 860
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 860
Book Description
Attractors and Methods
Author: Boling Guo
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110587084
Category : Mathematics
Languages : en
Pages : 553
Book Description
This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the fi rst volume is on the existence and properties for attractors and inertial manifolds. This volume highlights the use of modern analytical tools and methods such as the geometric measure method, center manifold theory in infinite dimensions, the Melnihov method, spectral analysis and so on for infinite-dimensional dynamical systems. The second volume includes the properties of global attractors, the calculation of discrete attractors, structures of small dissipative dynamical systems, and the existence and stability of solitary waves. Contents Discrete attractor and approximate calculation Some properties of global attractor Structures of small dissipative dynamical systems Existence and stability of solitary waves
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110587084
Category : Mathematics
Languages : en
Pages : 553
Book Description
This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the fi rst volume is on the existence and properties for attractors and inertial manifolds. This volume highlights the use of modern analytical tools and methods such as the geometric measure method, center manifold theory in infinite dimensions, the Melnihov method, spectral analysis and so on for infinite-dimensional dynamical systems. The second volume includes the properties of global attractors, the calculation of discrete attractors, structures of small dissipative dynamical systems, and the existence and stability of solitary waves. Contents Discrete attractor and approximate calculation Some properties of global attractor Structures of small dissipative dynamical systems Existence and stability of solitary waves
Nonlinear Dispersive Equations
Author: Terence Tao
Publisher: American Mathematical Soc.
ISBN: 0821841432
Category : Mathematics
Languages : en
Pages : 394
Book Description
"Starting only with a basic knowledge of graduate real analysis and Fourier analysis, the text first presents basic nonlinear tools such as the bootstrap method and perturbation theory in the simpler context of nonlinear ODE, then introduces the harmonic analysis and geometric tools used to control linear dispersive PDE. These methods are then combined to study four model nonlinear dispersive equations. Through extensive exercises, diagrams, and informal discussion, the book gives a rigorous theoretical treatment of the material, the real-world intuition and heuristics that underlie the subject, as well as mentioning connections with other areas of PDE, harmonic analysis, and dynamical systems.".
Publisher: American Mathematical Soc.
ISBN: 0821841432
Category : Mathematics
Languages : en
Pages : 394
Book Description
"Starting only with a basic knowledge of graduate real analysis and Fourier analysis, the text first presents basic nonlinear tools such as the bootstrap method and perturbation theory in the simpler context of nonlinear ODE, then introduces the harmonic analysis and geometric tools used to control linear dispersive PDE. These methods are then combined to study four model nonlinear dispersive equations. Through extensive exercises, diagrams, and informal discussion, the book gives a rigorous theoretical treatment of the material, the real-world intuition and heuristics that underlie the subject, as well as mentioning connections with other areas of PDE, harmonic analysis, and dynamical systems.".
Global Classical Solutions for Nonlinear Evolution Equations
Author: Ta-Tsien Li
Publisher: Chapman & Hall/CRC
ISBN: 9780582055889
Category : Mathematics
Languages : en
Pages : 209
Book Description
This text represents the results originally obtained by S. Lainerman, D. Christodoulou, Y. Choquet-Bruhat, T. Nishida and A. Matsumara on the global existence of classical solutions to the Cauchy problem with small initial data for nonlinear evolution equations.
Publisher: Chapman & Hall/CRC
ISBN: 9780582055889
Category : Mathematics
Languages : en
Pages : 209
Book Description
This text represents the results originally obtained by S. Lainerman, D. Christodoulou, Y. Choquet-Bruhat, T. Nishida and A. Matsumara on the global existence of classical solutions to the Cauchy problem with small initial data for nonlinear evolution equations.
Introduction to Nonlinear Dispersive Equations
Author: Felipe Linares
Publisher: Springer
ISBN: 1493921819
Category : Mathematics
Languages : en
Pages : 308
Book Description
This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.
Publisher: Springer
ISBN: 1493921819
Category : Mathematics
Languages : en
Pages : 308
Book Description
This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.
Nonlinear Wave Equations
Author: Walter A. Strauss
Publisher: American Mathematical Soc.
ISBN: 0821807250
Category : Mathematics
Languages : en
Pages : 106
Book Description
The theory of nonlinear wave equations in the absence of shocks began in the 1960s. Despite a great deal of recent activity in this area, some major issues remain unsolved, such as sharp conditions for the global existence of solutions with arbitrary initial data, and the global phase portrait in the presence of periodic solutions and traveling waves. This book, based on lectures presented by the author at George Mason University in January 1989, seeks to present the sharpest results to date in this area. The author surveys the fundamental qualitative properties of the solutions of nonlinear wave equations in the absence of boundaries and shocks. These properties include the existence and regularity of global solutions, strong and weak singularities, asymptotic properties, scattering theory and stability of solitary waves. Wave equations of hyperbolic, Schrodinger, and KdV type are discussed, as well as the Yang-Mills and the Vlasov-Maxwell equations. The book offers readers a broad overview of the field and an understanding of the most recent developments, as well as the status of some important unsolved problems. Intended for mathematicians and physicists interested in nonlinear waves, this book would be suitable as the basis for an advanced graduate-level course.
Publisher: American Mathematical Soc.
ISBN: 0821807250
Category : Mathematics
Languages : en
Pages : 106
Book Description
The theory of nonlinear wave equations in the absence of shocks began in the 1960s. Despite a great deal of recent activity in this area, some major issues remain unsolved, such as sharp conditions for the global existence of solutions with arbitrary initial data, and the global phase portrait in the presence of periodic solutions and traveling waves. This book, based on lectures presented by the author at George Mason University in January 1989, seeks to present the sharpest results to date in this area. The author surveys the fundamental qualitative properties of the solutions of nonlinear wave equations in the absence of boundaries and shocks. These properties include the existence and regularity of global solutions, strong and weak singularities, asymptotic properties, scattering theory and stability of solitary waves. Wave equations of hyperbolic, Schrodinger, and KdV type are discussed, as well as the Yang-Mills and the Vlasov-Maxwell equations. The book offers readers a broad overview of the field and an understanding of the most recent developments, as well as the status of some important unsolved problems. Intended for mathematicians and physicists interested in nonlinear waves, this book would be suitable as the basis for an advanced graduate-level course.