Author: Guanrong Chen
Publisher: World Scientific
ISBN: 9789812705303
Category : Mathematics
Languages : en
Pages : 660
Book Description
In this volume, leading experts present current achievements in the forefront of research in the challenging field of chaos in circuits and systems, with emphasis on engineering perspectives, methodologies, circuitry design techniques, and potential applications of chaos and bifurcation. A combination of overview, tutorial and technical articles, the book describes state-of-the-art research on significant problems in this field. It is suitable for readers ranging from graduate students, university professors, laboratory researchers and industrial practitioners to applied mathematicians and physicists in electrical, electronic, mechanical, physical, chemical and biomedical engineering and science.
Chaos in Circuits and Systems
Author: Guanrong Chen
Publisher: World Scientific
ISBN: 9789812705303
Category : Mathematics
Languages : en
Pages : 660
Book Description
In this volume, leading experts present current achievements in the forefront of research in the challenging field of chaos in circuits and systems, with emphasis on engineering perspectives, methodologies, circuitry design techniques, and potential applications of chaos and bifurcation. A combination of overview, tutorial and technical articles, the book describes state-of-the-art research on significant problems in this field. It is suitable for readers ranging from graduate students, university professors, laboratory researchers and industrial practitioners to applied mathematicians and physicists in electrical, electronic, mechanical, physical, chemical and biomedical engineering and science.
Publisher: World Scientific
ISBN: 9789812705303
Category : Mathematics
Languages : en
Pages : 660
Book Description
In this volume, leading experts present current achievements in the forefront of research in the challenging field of chaos in circuits and systems, with emphasis on engineering perspectives, methodologies, circuitry design techniques, and potential applications of chaos and bifurcation. A combination of overview, tutorial and technical articles, the book describes state-of-the-art research on significant problems in this field. It is suitable for readers ranging from graduate students, university professors, laboratory researchers and industrial practitioners to applied mathematicians and physicists in electrical, electronic, mechanical, physical, chemical and biomedical engineering and science.
The Chaotic Pendulum
Author: Moshe Gitterman
Publisher: World Scientific
ISBN: 9814464244
Category : Science
Languages : en
Pages : 157
Book Description
Pendulum is the simplest nonlinear system, which, however, provides the means for the description of different phenomena in Nature that occur in physics, chemistry, biology, medicine, communications, economics and sociology. The chaotic behavior of pendulum is usually associated with the random force acting on a pendulum (Brownian motion). Another type of chaotic motion (deterministic chaos) occurs in nonlinear systems with only few degrees of freedom. This book presents a comprehensive description of these phenomena going on in underdamped and overdamped pendula subject to additive and multiplicative periodic and random forces. No preliminary knowledge, such as complex mathematical or numerical methods, is required from a reader other than undergraduate courses in mathematical physics. A wide group of researchers, along with students and teachers will, thus, benefit from this definitive book on nonlinear dynamics.
Publisher: World Scientific
ISBN: 9814464244
Category : Science
Languages : en
Pages : 157
Book Description
Pendulum is the simplest nonlinear system, which, however, provides the means for the description of different phenomena in Nature that occur in physics, chemistry, biology, medicine, communications, economics and sociology. The chaotic behavior of pendulum is usually associated with the random force acting on a pendulum (Brownian motion). Another type of chaotic motion (deterministic chaos) occurs in nonlinear systems with only few degrees of freedom. This book presents a comprehensive description of these phenomena going on in underdamped and overdamped pendula subject to additive and multiplicative periodic and random forces. No preliminary knowledge, such as complex mathematical or numerical methods, is required from a reader other than undergraduate courses in mathematical physics. A wide group of researchers, along with students and teachers will, thus, benefit from this definitive book on nonlinear dynamics.
Regular and Chaotic Oscillations
Author: Polina S. Landa
Publisher: Springer Science & Business Media
ISBN: 3540452524
Category : Mathematics
Languages : en
Pages : 401
Book Description
This text maps out the modern theory of non-linear oscillations. The material is presented in a non-traditional manner and emphasises the new results of the theory - obtained partially by the author, who is one of the leading experts in the area. Among the topics are: synchronization and chaotization of self-oscillatory systems and the influence of weak random vibration on modification of characteristics and behaviour of the non-linear systems.
Publisher: Springer Science & Business Media
ISBN: 3540452524
Category : Mathematics
Languages : en
Pages : 401
Book Description
This text maps out the modern theory of non-linear oscillations. The material is presented in a non-traditional manner and emphasises the new results of the theory - obtained partially by the author, who is one of the leading experts in the area. Among the topics are: synchronization and chaotization of self-oscillatory systems and the influence of weak random vibration on modification of characteristics and behaviour of the non-linear systems.
Simulating Hamiltonian Dynamics
Author: Benedict Leimkuhler
Publisher: Cambridge University Press
ISBN: 9780521772907
Category : Mathematics
Languages : en
Pages : 464
Book Description
Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.
Publisher: Cambridge University Press
ISBN: 9780521772907
Category : Mathematics
Languages : en
Pages : 464
Book Description
Geometric integrators are time-stepping methods, designed such that they exactly satisfy conservation laws, symmetries or symplectic properties of a system of differential equations. In this book the authors outline the principles of geometric integration and demonstrate how they can be applied to provide efficient numerical methods for simulating conservative models. Beginning from basic principles and continuing with discussions regarding the advantageous properties of such schemes, the book introduces methods for the N-body problem, systems with holonomic constraints, and rigid bodies. More advanced topics treated include high-order and variable stepsize methods, schemes for treating problems involving multiple time-scales, and applications to molecular dynamics and partial differential equations. The emphasis is on providing a unified theoretical framework as well as a practical guide for users. The inclusion of examples, background material and exercises enhance the usefulness of the book for self-instruction or as a text for a graduate course on the subject.
Introduction To Control Of Oscillations And Chaos
Author: Alexander L Fradkov
Publisher: World Scientific
ISBN: 9814497665
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
This book gives an exposition of the exciting field of control of oscillatory and chaotic systems, which has numerous potential applications in mechanics, laser and chemical technologies, communications, biology and medicine, economics, ecology, etc.A novelty of the book is its systematic application of modern nonlinear and adaptive control theory to the new class of problems. The proposed control design methods are based on the concepts of Lyapunov functions, Poincare maps, speed-gradient and gradient algorithms. The conditions which ensure such control goals as an excitation or suppression of oscillations, synchronization and transformation from chaotic mode to the periodic one or vice versa, are established. The performance and robustness of control systems under disturbances and uncertainties are evaluated.The described methods and algorithms are illustrated by a number of examples, including classical models of oscillatory and chaotic systems: coupled pendula, brusselator, Lorenz, Van der Pol, Duffing, Henon and Chua systems. Practical examples from different fields of science and technology such as communications, growth of thin films, synchronization of chaotic generators based on tunnel diods, stabilization of swings in power systems, increasing predictability of business-cycles are also presented.The book includes many results on nonlinear and adaptive control published previously in Russian and therefore were not known to the West.Researchers, teachers and graduate students in the fields of electrical and mechanical engineering, physics, chemistry, biology, economics will find this book most useful. Applied mathematicians and control engineers from various fields of technology dealing with complex oscillatory systems will also benefit from it.
Publisher: World Scientific
ISBN: 9814497665
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
This book gives an exposition of the exciting field of control of oscillatory and chaotic systems, which has numerous potential applications in mechanics, laser and chemical technologies, communications, biology and medicine, economics, ecology, etc.A novelty of the book is its systematic application of modern nonlinear and adaptive control theory to the new class of problems. The proposed control design methods are based on the concepts of Lyapunov functions, Poincare maps, speed-gradient and gradient algorithms. The conditions which ensure such control goals as an excitation or suppression of oscillations, synchronization and transformation from chaotic mode to the periodic one or vice versa, are established. The performance and robustness of control systems under disturbances and uncertainties are evaluated.The described methods and algorithms are illustrated by a number of examples, including classical models of oscillatory and chaotic systems: coupled pendula, brusselator, Lorenz, Van der Pol, Duffing, Henon and Chua systems. Practical examples from different fields of science and technology such as communications, growth of thin films, synchronization of chaotic generators based on tunnel diods, stabilization of swings in power systems, increasing predictability of business-cycles are also presented.The book includes many results on nonlinear and adaptive control published previously in Russian and therefore were not known to the West.Researchers, teachers and graduate students in the fields of electrical and mechanical engineering, physics, chemistry, biology, economics will find this book most useful. Applied mathematicians and control engineers from various fields of technology dealing with complex oscillatory systems will also benefit from it.
Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
College Physics for AP® Courses
Author: Irna Lyublinskaya
Publisher:
ISBN: 9781938168932
Category : Physics
Languages : en
Pages : 1665
Book Description
"This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. ... This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems."--Website of book.
Publisher:
ISBN: 9781938168932
Category : Physics
Languages : en
Pages : 1665
Book Description
"This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. ... This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems."--Website of book.
Normal Modes and Localization in Nonlinear Systems
Author: Alexander F. Vakakis
Publisher: Springer Science & Business Media
ISBN: 9401724520
Category : Science
Languages : en
Pages : 290
Book Description
The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape ¢n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape ¢n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.
Publisher: Springer Science & Business Media
ISBN: 9401724520
Category : Science
Languages : en
Pages : 290
Book Description
The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape ¢n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping. On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape ¢n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996.
The Noisy Pendulum
Author: M. Gitterman
Publisher: World Scientific
ISBN: 9812833005
Category : Mathematics
Languages : en
Pages : 133
Book Description
This book contains the general description of the mathematical pendulum subject to constant torque, periodic and random forces. The latter appear in additive and multiplicative form with their possible correlation. For the underdamped pendulum driven by periodic forces, a new phenomenon OCo deterministic chaos OCo comes into play, and the common action of this chaos and the influence of noise are taken into account. The inverted position of the pendulum can be stabilized either by periodic or random oscillations of the suspension axis or by inserting a spring into a rigid rod, or by their combination. The pendulum is one of the simplest nonlinear models, which has many applications in physics, chemistry, biology, medicine, communications, economics and sociology. A wide group of researchers working in these fields, along with students and teachers, will benefit from this book.
Publisher: World Scientific
ISBN: 9812833005
Category : Mathematics
Languages : en
Pages : 133
Book Description
This book contains the general description of the mathematical pendulum subject to constant torque, periodic and random forces. The latter appear in additive and multiplicative form with their possible correlation. For the underdamped pendulum driven by periodic forces, a new phenomenon OCo deterministic chaos OCo comes into play, and the common action of this chaos and the influence of noise are taken into account. The inverted position of the pendulum can be stabilized either by periodic or random oscillations of the suspension axis or by inserting a spring into a rigid rod, or by their combination. The pendulum is one of the simplest nonlinear models, which has many applications in physics, chemistry, biology, medicine, communications, economics and sociology. A wide group of researchers working in these fields, along with students and teachers, will benefit from this book.
Galileo Unbound
Author: David D. Nolte
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 384
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 384
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.