Author: Guy Boillat
Publisher: Springer
ISBN: 3540495657
Category : Mathematics
Languages : en
Pages : 149
Book Description
These lecture notes of the courses presented at the first CIME session 1994 by leading scientists present the state of the art in recent mathematical methods in Nonlinear Wave Propagation.
Recent Mathematical Methods in Nonlinear Wave Propagation
Mathematics of Wave Propagation
Author: Julian L. Davis
Publisher: Princeton University Press
ISBN: 0691223378
Category : Mathematics
Languages : en
Pages : 411
Book Description
Earthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculus, characteristics theory, and caustics. Taking a medium-by-medium approach, Julian Davis explains the mathematics needed to understand wave propagation in inviscid and viscous fluids, elastic solids, viscoelastic solids, and thermoelastic media, including hyperbolic partial differential equations and characteristics theory, which makes possible geometric solutions to nonlinear wave problems. The result is a clear and unified treatment of wave propagation that makes a diverse body of mathematics accessible to engineers, physicists, and applied mathematicians engaged in research on elasticity, aerodynamics, and fluid mechanics. This book will particularly appeal to those working across specializations and those who seek the truly interdisciplinary understanding necessary to fully grasp waves and their behavior. By proceeding from concrete phenomena (e.g., the Doppler effect, the motion of sinusoidal waves, energy dissipation in viscous fluids, thermal stress) rather than abstract mathematical principles, Davis also creates a one-stop reference that will be prized by students of continuum mechanics and by mathematicians needing information on the physics of waves.
Publisher: Princeton University Press
ISBN: 0691223378
Category : Mathematics
Languages : en
Pages : 411
Book Description
Earthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculus, characteristics theory, and caustics. Taking a medium-by-medium approach, Julian Davis explains the mathematics needed to understand wave propagation in inviscid and viscous fluids, elastic solids, viscoelastic solids, and thermoelastic media, including hyperbolic partial differential equations and characteristics theory, which makes possible geometric solutions to nonlinear wave problems. The result is a clear and unified treatment of wave propagation that makes a diverse body of mathematics accessible to engineers, physicists, and applied mathematicians engaged in research on elasticity, aerodynamics, and fluid mechanics. This book will particularly appeal to those working across specializations and those who seek the truly interdisciplinary understanding necessary to fully grasp waves and their behavior. By proceeding from concrete phenomena (e.g., the Doppler effect, the motion of sinusoidal waves, energy dissipation in viscous fluids, thermal stress) rather than abstract mathematical principles, Davis also creates a one-stop reference that will be prized by students of continuum mechanics and by mathematicians needing information on the physics of waves.
Mathematical Studies in Nonlinear Wave Propagation
Author: Dominic P. Clemence
Publisher: American Mathematical Soc.
ISBN: 0821833499
Category : Mathematics
Languages : en
Pages : 226
Book Description
Lively discussions and stimulating research were part of a five-day conference on Mathematical Methods in Nonlinear Wave Propagation sponsored by the NSF and CBMS. This volume is a collection of lectures and papers stemming from that event. Leading experts present dynamical systems and chaos, scattering and spectral theory, nonlinear wave equations, optimal control, optical waveguide design, and numerical simulation. The book is suitable for a diverse audience of mathematical specialists interested in fiber optic communications and other nonlinear phenomena. It is also suitable for engineers and other scientists interested in the mathematics of nonlinear wave propagation.
Publisher: American Mathematical Soc.
ISBN: 0821833499
Category : Mathematics
Languages : en
Pages : 226
Book Description
Lively discussions and stimulating research were part of a five-day conference on Mathematical Methods in Nonlinear Wave Propagation sponsored by the NSF and CBMS. This volume is a collection of lectures and papers stemming from that event. Leading experts present dynamical systems and chaos, scattering and spectral theory, nonlinear wave equations, optimal control, optical waveguide design, and numerical simulation. The book is suitable for a diverse audience of mathematical specialists interested in fiber optic communications and other nonlinear phenomena. It is also suitable for engineers and other scientists interested in the mathematics of nonlinear wave propagation.
Ray Methods for Nonlinear Waves in Fluids and Plasmas
Author: Marcelo Anile
Publisher: CRC Press
ISBN: 1000447588
Category : Mathematics
Languages : en
Pages : 268
Book Description
Presents in a systematic and unified manner the ray method, in its various forms, for studying nonlinear wave propagation in situations of physical interest, essentially fluid dynamics and plasma physics.
Publisher: CRC Press
ISBN: 1000447588
Category : Mathematics
Languages : en
Pages : 268
Book Description
Presents in a systematic and unified manner the ray method, in its various forms, for studying nonlinear wave propagation in situations of physical interest, essentially fluid dynamics and plasma physics.
Nonlinear Waves in Integrable and Non-integrable Systems
Author: Jianke Yang
Publisher: SIAM
ISBN: 0898717051
Category : Science
Languages : en
Pages : 452
Book Description
Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).
Publisher: SIAM
ISBN: 0898717051
Category : Science
Languages : en
Pages : 452
Book Description
Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).
Nonlinear Waves And Inverse Scattering Transform
Author: Spencer P Kuo
Publisher: World Scientific
ISBN: 1800614055
Category : Science
Languages : en
Pages : 198
Book Description
Nonlinear waves are essential phenomena in scientific and engineering disciplines. The features of nonlinear waves are usually described by solutions to nonlinear partial differential equations (NLPDEs). This book was prepared to familiarize students with nonlinear waves and methods of solving NLPDEs, which will enable them to expand their studies into related areas. The selection of topics and the focus given to each provide essential materials for a lecturer teaching a nonlinear wave course.Chapter 1 introduces 'mode' types in nonlinear systems as well as Bäcklund transform, an indispensable technique to solve generic NLPDEs for stationary solutions. Chapters 2 and 3 are devoted to the derivation and solution characterization of three generic nonlinear equations: nonlinear Schrödinger equation, Korteweg-de Vries (KdV) equation, and Burgers equation. Chapter 4 is devoted to the inverse scattering transform (IST), addressing the initial value problems of a group of NLPDEs. In Chapter 5, derivations and proofs of the IST formulas are presented. Steps for applying IST to solve NLPDEs for solitary solutions are illustrated in Chapter 6.
Publisher: World Scientific
ISBN: 1800614055
Category : Science
Languages : en
Pages : 198
Book Description
Nonlinear waves are essential phenomena in scientific and engineering disciplines. The features of nonlinear waves are usually described by solutions to nonlinear partial differential equations (NLPDEs). This book was prepared to familiarize students with nonlinear waves and methods of solving NLPDEs, which will enable them to expand their studies into related areas. The selection of topics and the focus given to each provide essential materials for a lecturer teaching a nonlinear wave course.Chapter 1 introduces 'mode' types in nonlinear systems as well as Bäcklund transform, an indispensable technique to solve generic NLPDEs for stationary solutions. Chapters 2 and 3 are devoted to the derivation and solution characterization of three generic nonlinear equations: nonlinear Schrödinger equation, Korteweg-de Vries (KdV) equation, and Burgers equation. Chapter 4 is devoted to the inverse scattering transform (IST), addressing the initial value problems of a group of NLPDEs. In Chapter 5, derivations and proofs of the IST formulas are presented. Steps for applying IST to solve NLPDEs for solitary solutions are illustrated in Chapter 6.
Introduction to the Mathematical Physics of Nonlinear Waves
Author: Minoru Fujimoto
Publisher: Morgan & Claypool Publishers
ISBN: 1627052771
Category : Science
Languages : en
Pages : 217
Book Description
Nonlinear physics is a well-established discipline in physics today, and this book offers a comprehensive account of the basic soliton theory and its applications. Although primarily mathematical, the theory for nonlinear phenomena in practical environment
Publisher: Morgan & Claypool Publishers
ISBN: 1627052771
Category : Science
Languages : en
Pages : 217
Book Description
Nonlinear physics is a well-established discipline in physics today, and this book offers a comprehensive account of the basic soliton theory and its applications. Although primarily mathematical, the theory for nonlinear phenomena in practical environment
Peter Lax, Mathematician
Author: Reuben Hersh
Publisher: American Mathematical Soc.
ISBN: 1470417081
Category : Biography & Autobiography
Languages : en
Pages : 298
Book Description
This book is a biography of one of the most famous and influential living mathematicians, Peter Lax. He is virtually unique as a preeminent leader in both pure and applied mathematics, fields which are often seen as competing and incompatible. Although he has been an academic for all of his adult life, his biography is not without drama and tragedy. Lax and his family barely escaped to the U.S. from Budapest before the Holocaust descended. He was one of the youngest scientists to work on the Manhattan Project. He played a leading role in coping with the infamous "kidnapping" of the NYU mathematics department's computer, in 1970. The list of topics in which Lax made fundamental and long-lasting contributions is remarkable: scattering theory, solitons, shock waves, and even classical analysis, to name a few. His work has been honored many times, including the Abel Prize in 2005. The book concludes with an account of his most important mathematical contributions, made accessible without heavy prerequisites. Reuben Hersh has written extensively on mathematics. His book with Philip Davis, The Mathematical Experience, won the National Book Award in science. Hersh is emeritus professor of mathematics at the University of New Mexico.
Publisher: American Mathematical Soc.
ISBN: 1470417081
Category : Biography & Autobiography
Languages : en
Pages : 298
Book Description
This book is a biography of one of the most famous and influential living mathematicians, Peter Lax. He is virtually unique as a preeminent leader in both pure and applied mathematics, fields which are often seen as competing and incompatible. Although he has been an academic for all of his adult life, his biography is not without drama and tragedy. Lax and his family barely escaped to the U.S. from Budapest before the Holocaust descended. He was one of the youngest scientists to work on the Manhattan Project. He played a leading role in coping with the infamous "kidnapping" of the NYU mathematics department's computer, in 1970. The list of topics in which Lax made fundamental and long-lasting contributions is remarkable: scattering theory, solitons, shock waves, and even classical analysis, to name a few. His work has been honored many times, including the Abel Prize in 2005. The book concludes with an account of his most important mathematical contributions, made accessible without heavy prerequisites. Reuben Hersh has written extensively on mathematics. His book with Philip Davis, The Mathematical Experience, won the National Book Award in science. Hersh is emeritus professor of mathematics at the University of New Mexico.
Geometry, Mechanics, and Dynamics
Author: Paul Newton
Publisher: Springer Science & Business Media
ISBN: 0387217916
Category : Mathematics
Languages : en
Pages : 573
Book Description
Jerry Marsden, one of the world’s pre-eminent mechanicians and applied mathematicians, celebrated his 60th birthday in August 2002. The event was marked by a workshop on “Geometry, Mechanics, and Dynamics”at the Fields Institute for Research in the Mathematical Sciences, of which he wasthefoundingDirector. Ratherthanmerelyproduceaconventionalp- ceedings, with relatively brief accounts of research and technical advances presented at the meeting, we wished to acknowledge Jerry’s in?uence as a teacher, a propagator of new ideas, and a mentor of young talent. Con- quently, starting in 1999, we sought to collect articles that might be used as entry points by students interested in ?elds that have been shaped by Jerry’s work. At the same time we hoped to give experts engrossed in their own technical niches an indication of the wonderful breadth and depth of their subjects as a whole. This book is an outcome of the e?orts of those who accepted our in- tations to contribute. It presents both survey and research articles in the several ?elds that represent the main themes of Jerry’s work, including elasticity and analysis, ?uid mechanics, dynamical systems theory, g- metric mechanics, geometric control theory, and relativity and quantum mechanics. The common thread running through this broad tapestry is the use of geometric methods that serve to unify diverse disciplines and bring a widevarietyofscientistsandmathematicianstogether,speakingalanguage which enhances dialogue and encourages cross-fertilization.
Publisher: Springer Science & Business Media
ISBN: 0387217916
Category : Mathematics
Languages : en
Pages : 573
Book Description
Jerry Marsden, one of the world’s pre-eminent mechanicians and applied mathematicians, celebrated his 60th birthday in August 2002. The event was marked by a workshop on “Geometry, Mechanics, and Dynamics”at the Fields Institute for Research in the Mathematical Sciences, of which he wasthefoundingDirector. Ratherthanmerelyproduceaconventionalp- ceedings, with relatively brief accounts of research and technical advances presented at the meeting, we wished to acknowledge Jerry’s in?uence as a teacher, a propagator of new ideas, and a mentor of young talent. Con- quently, starting in 1999, we sought to collect articles that might be used as entry points by students interested in ?elds that have been shaped by Jerry’s work. At the same time we hoped to give experts engrossed in their own technical niches an indication of the wonderful breadth and depth of their subjects as a whole. This book is an outcome of the e?orts of those who accepted our in- tations to contribute. It presents both survey and research articles in the several ?elds that represent the main themes of Jerry’s work, including elasticity and analysis, ?uid mechanics, dynamical systems theory, g- metric mechanics, geometric control theory, and relativity and quantum mechanics. The common thread running through this broad tapestry is the use of geometric methods that serve to unify diverse disciplines and bring a widevarietyofscientistsandmathematicianstogether,speakingalanguage which enhances dialogue and encourages cross-fertilization.
Proceedings, "WASCOM 2001"
Author: Roberto Monaco
Publisher: World Scientific
ISBN: 9789812380173
Category : Science
Languages : en
Pages : 624
Book Description
First organized in 1981, the WASCOM conference to bring together researchers and scientists from all over the world to discuss problems, promote collaborations and shape future directions for research in the field of stability and wave propagation in continuous media.This book constitutes the proceedings of the 11th edition of the conference, the first of the third millennium. The main topics are: (1) Linear and nonlinear hyperbolic equations, conservation laws and specific aspects of wave propagation; (2) stability of systems of PDEs, with particular reference to those of fluid and solid mechanics; (3) extended thermodynamics and passage from microscopic to macroscopic description of the medium for systems characterized also by inelastic interactions at the kinetic scale.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
Publisher: World Scientific
ISBN: 9789812380173
Category : Science
Languages : en
Pages : 624
Book Description
First organized in 1981, the WASCOM conference to bring together researchers and scientists from all over the world to discuss problems, promote collaborations and shape future directions for research in the field of stability and wave propagation in continuous media.This book constitutes the proceedings of the 11th edition of the conference, the first of the third millennium. The main topics are: (1) Linear and nonlinear hyperbolic equations, conservation laws and specific aspects of wave propagation; (2) stability of systems of PDEs, with particular reference to those of fluid and solid mechanics; (3) extended thermodynamics and passage from microscopic to macroscopic description of the medium for systems characterized also by inelastic interactions at the kinetic scale.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)