Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws PDF Author: LEVEQUE
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221

Get Book Here

Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.

Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws PDF Author: LEVEQUE
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221

Get Book Here

Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.

Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws

Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws PDF Author: François Bouchut
Publisher: Springer Science & Business Media
ISBN: 9783764366650
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
The schemes are analyzed regarding their nonlinear stability Recently developed entropy schemes are presented A formalism is introduced for source terms

Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws PDF Author: Jan S. Hesthaven
Publisher: SIAM
ISBN: 1611975107
Category : Science
Languages : en
Pages : 571

Get Book Here

Book Description
Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.

Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws

Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws PDF Author: Rainer Ansorge
Publisher: Springer Science & Business Media
ISBN: 364233220X
Category : Technology & Engineering
Languages : en
Pages : 325

Get Book Here

Book Description
In January 2012 an Oberwolfach workshop took place on the topic of recent developments in the numerics of partial differential equations. Focus was laid on methods of high order and on applications in Computational Fluid Dynamics. The book covers most of the talks presented at this workshop.

Nonlinear Conservation Laws and Applications

Nonlinear Conservation Laws and Applications PDF Author: Alberto Bressan
Publisher: Springer Science & Business Media
ISBN: 1441995544
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
This volume contains the proceedings of the Summer Program on Nonlinear Conservation Laws and Applications held at the IMA on July 13--31, 2009. Hyperbolic conservation laws is a classical subject, which has experienced vigorous growth in recent years. The present collection provides a timely survey of the state of the art in this exciting field, and a comprehensive outlook on open problems. Contributions of more theoretical nature cover the following topics: global existence and uniqueness theory of one-dimensional systems, multidimensional conservation laws in several space variables and approximations of their solutions, mathematical analysis of fluid motion, stability and dynamics of viscous shock waves, singular limits for viscous systems, basic principles in the modeling of turbulent mixing, transonic flows past an obstacle and a fluid dynamic approach for isometric embedding in geometry, models of nonlinear elasticity, the Monge problem, and transport equations with rough coefficients. In addition, there are a number of papers devoted to applications. These include: models of blood flow, self-gravitating compressible fluids, granular flow, charge transport in fluids, and the modeling and control of traffic flow on networks.

Recent Developments in the Solution of Nonlinear Differential Equations

Recent Developments in the Solution of Nonlinear Differential Equations PDF Author: Bruno Carpentieri
Publisher: BoD – Books on Demand
ISBN: 1839686561
Category : Mathematics
Languages : en
Pages : 374

Get Book Here

Book Description
Nonlinear differential equations are ubiquitous in computational science and engineering modeling, fluid dynamics, finance, and quantum mechanics, among other areas. Nowadays, solving challenging problems in an industrial setting requires a continuous interplay between the theory of such systems and the development and use of sophisticated computational methods that can guide and support the theoretical findings via practical computer simulations. Owing to the impressive development in computer technology and the introduction of fast numerical methods with reduced algorithmic and memory complexity, rigorous solutions in many applications have become possible. This book collects research papers from leading world experts in the field, highlighting ongoing trends, progress, and open problems in this critically important area of mathematics.

Numerical Approximation of Hyperbolic Systems of Conservation Laws

Numerical Approximation of Hyperbolic Systems of Conservation Laws PDF Author: Edwige Godlewski
Publisher: Springer Nature
ISBN: 1071613448
Category : Mathematics
Languages : en
Pages : 846

Get Book Here

Book Description
This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.

Recent Advances in Partial Differential Equations, Venice 1996

Recent Advances in Partial Differential Equations, Venice 1996 PDF Author: Peter D. Lax
Publisher: American Mathematical Soc.
ISBN: 9780821867594
Category : Mathematics
Languages : en
Pages : 412

Get Book Here

Book Description
Lax and Nirenberg are two of the most distinguished mathematicians of our times. Their work on partial differential equations (PDEs) over the last half-century has dramatically advanced the subject and has profoundly influenced the course of mathematics. A huge part of the development in PDEs during this period has either been through their work, motivated by it or achieved by their postdocs and students. A large number of mathematicians honored these two exceptional scientists in a week-long conference in Venice (June 1996) on the occasion of their 70th birthdays. This volume contains the proceedings of the conference, which focused on the modern theory of nonlinear PDEs and their applications. Among the topics treated are turbulence, kinetic models of a rarefied gas, vortex filaments, dispersive waves, singular limits and blow-up solutions, conservation laws, Hamiltonian systems and others. The conference served as a forum for the dissemination of new scientific ideas and discoveries and enhanced scientific communication by bringing together such a large number of scientists working in related fields. THe event allowed the international mathematics community to honor two of its outstanding members.

Recent Numerical Advances in Fluid Mechanics

Recent Numerical Advances in Fluid Mechanics PDF Author: Omer San
Publisher: MDPI
ISBN: 3039364022
Category : Technology & Engineering
Languages : en
Pages : 302

Get Book Here

Book Description
In recent decades, the field of computational fluid dynamics has made significant advances in enabling advanced computing architectures to understand many phenomena in biological, geophysical, and engineering fluid flows. Almost all research areas in fluids use numerical methods at various complexities: from molecular to continuum descriptions; from laminar to turbulent regimes; from low speed to hypersonic, from stencil-based computations to meshless approaches; from local basis functions to global expansions, as well as from first-order approximation to high-order with spectral accuracy. Many successful efforts have been put forth in dynamic adaptation strategies, e.g., adaptive mesh refinement and multiresolution representation approaches. Furthermore, with recent advances in artificial intelligence and heterogeneous computing, the broader fluids community has gained the momentum to revisit and investigate such practices. This Special Issue, containing a collection of 13 papers, brings together researchers to address recent numerical advances in fluid mechanics.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702

Get Book Here

Book Description