Author: Vesselinka Petrova-Koch
Publisher: Springer Science & Business Media
ISBN: 3540793585
Category : Science
Languages : en
Pages : 235
Book Description
A bird's-eye view of the developmental trends and problems of recent photovoltaics is presented. The worldwide effort to develop high-efficiency low-cost PV modules, making use of most efficient solar cells and clever low-cost solar concentrators is described.
High-Efficient Low-Cost Photovoltaics
Author: Vesselinka Petrova-Koch
Publisher: Springer Science & Business Media
ISBN: 3540793585
Category : Science
Languages : en
Pages : 235
Book Description
A bird's-eye view of the developmental trends and problems of recent photovoltaics is presented. The worldwide effort to develop high-efficiency low-cost PV modules, making use of most efficient solar cells and clever low-cost solar concentrators is described.
Publisher: Springer Science & Business Media
ISBN: 3540793585
Category : Science
Languages : en
Pages : 235
Book Description
A bird's-eye view of the developmental trends and problems of recent photovoltaics is presented. The worldwide effort to develop high-efficiency low-cost PV modules, making use of most efficient solar cells and clever low-cost solar concentrators is described.
Recent Advances in Photovoltaics
Author: Meera Ramrakhiani
Publisher: Materials Research Forum LLC
ISBN: 1945291370
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
The ever growing demand for clean energy potentially can be met by solar-to-electrical energy conversion. This book on “Recent Advances in Photovoltaics” presents a detailed overview of recent research and developments in the field of photovoltaics and solar cells. It starts with the basic theory and gradual progress in the field of photovoltaics and various generations of solar cells. The search for new materials and/or new structures such as multi-junctions, nanostructures, photoelectrochemical cells, organic solar cells etc. for improved performance is discussed. The experimental investigations on certain materials and modelling for better results are also described in the book. Photovoltaics, Solar Cells, Multi-Junctions Solar Cells, Nanostructured Solar Cells, Photoelectrochemical Solar Cells, Organic Solar Cells, Polymer Solar Cells
Publisher: Materials Research Forum LLC
ISBN: 1945291370
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
The ever growing demand for clean energy potentially can be met by solar-to-electrical energy conversion. This book on “Recent Advances in Photovoltaics” presents a detailed overview of recent research and developments in the field of photovoltaics and solar cells. It starts with the basic theory and gradual progress in the field of photovoltaics and various generations of solar cells. The search for new materials and/or new structures such as multi-junctions, nanostructures, photoelectrochemical cells, organic solar cells etc. for improved performance is discussed. The experimental investigations on certain materials and modelling for better results are also described in the book. Photovoltaics, Solar Cells, Multi-Junctions Solar Cells, Nanostructured Solar Cells, Photoelectrochemical Solar Cells, Organic Solar Cells, Polymer Solar Cells
Solar Cells
Author: Ahmed Mourtada Elseman
Publisher: BoD – Books on Demand
ISBN: 1838810161
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
Solar cell energy is the single most pressing issue facing humanity, with a more technologically advanced society requiring better energy resources. This book discusses technologies broadly, depending on how they capture and distribute solar energy or convert it into solar power. The major areas covered in this book are: • The theory of solar cells, which explains the conversion of light energy in photons into electric current. The theoretical studies are practical because they predict the fundamental limits of a solar cell. • The design and development of thin-film technology-based solar cells. • State of the art for bulk material applied for solar cells based on crystalline silicon (c-Si), also known as “solar grade silicon,” and emerging photovoltaics.
Publisher: BoD – Books on Demand
ISBN: 1838810161
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
Solar cell energy is the single most pressing issue facing humanity, with a more technologically advanced society requiring better energy resources. This book discusses technologies broadly, depending on how they capture and distribute solar energy or convert it into solar power. The major areas covered in this book are: • The theory of solar cells, which explains the conversion of light energy in photons into electric current. The theoretical studies are practical because they predict the fundamental limits of a solar cell. • The design and development of thin-film technology-based solar cells. • State of the art for bulk material applied for solar cells based on crystalline silicon (c-Si), also known as “solar grade silicon,” and emerging photovoltaics.
Recent Developments in Photovoltaic Materials and Devices
Author: Natarajan Prabaharan
Publisher: BoD – Books on Demand
ISBN: 1789854032
Category : Technology & Engineering
Languages : en
Pages : 153
Book Description
This book covers the recent advances in solar photovoltaic materials and their innovative applications. Many problems in material science are explored for enhancing the understanding of solar cells and the development of more efficient, less costly, and more stable cells. This book is crucial and relevant at this juncture and provides a historical overview focusing primarily on the exciting developments in the last decade. This book primarily covers the different Maximum Power Point Tracking control techniques that have led to the improved speed of response of solar photovoltaics, augmented search accuracy, and superior control in the presence of perturbations such as sudden variations in illumination and temperature. Furthermore, the optimal design of a photovoltaic system based on two different approaches such as consumed power and economics is discussed.
Publisher: BoD – Books on Demand
ISBN: 1789854032
Category : Technology & Engineering
Languages : en
Pages : 153
Book Description
This book covers the recent advances in solar photovoltaic materials and their innovative applications. Many problems in material science are explored for enhancing the understanding of solar cells and the development of more efficient, less costly, and more stable cells. This book is crucial and relevant at this juncture and provides a historical overview focusing primarily on the exciting developments in the last decade. This book primarily covers the different Maximum Power Point Tracking control techniques that have led to the improved speed of response of solar photovoltaics, augmented search accuracy, and superior control in the presence of perturbations such as sudden variations in illumination and temperature. Furthermore, the optimal design of a photovoltaic system based on two different approaches such as consumed power and economics is discussed.
Thin-Film Silicon Solar Cells
Author: Arvind Victor Shah
Publisher: CRC Press
ISBN: 1439808104
Category : Science
Languages : en
Pages : 438
Book Description
Photovoltaic technology has now developed to the extent that it is close to fulfilling the vision of a "solar-energy world," as devices based on this technology are becoming efficient, low-cost and durable. This book provides a comprehensive treatment of thin-film silicon, a prevalent PV material, in terms of its semiconductor nature, startin
Publisher: CRC Press
ISBN: 1439808104
Category : Science
Languages : en
Pages : 438
Book Description
Photovoltaic technology has now developed to the extent that it is close to fulfilling the vision of a "solar-energy world," as devices based on this technology are becoming efficient, low-cost and durable. This book provides a comprehensive treatment of thin-film silicon, a prevalent PV material, in terms of its semiconductor nature, startin
Perovskite Photovoltaics
Author: Aparna Thankappan
Publisher: Academic Press
ISBN: 0128129166
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. - Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe - Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different - Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells
Publisher: Academic Press
ISBN: 0128129166
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. - Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe - Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different - Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells
Next Generation of Photovoltaics
Author: Ana Cristobal
Publisher: Springer Science & Business Media
ISBN: 3642233686
Category : Technology & Engineering
Languages : en
Pages : 362
Book Description
This book presents new concepts for a next generation of PV. Among these concepts are: Multijunction solar cells, multiple excitation solar cells (or how to take benefit of high energy photons for the creation of more than one electron hole-pair), intermediate band solar cells (or how to take advantage of below band-gap energy photons) and related technologies (for quantum dots, nitrides, thin films), advanced light management approaches (plasmonics). Written by world-class experts in next generation photovoltaics this book is an essential reference guide accessible to both beginners and experts working with solar cell technology. The book deeply analyzes the current state-of-the-art of the new photovoltaic approaches and outlines the implementation paths of these advanced devices. Topics addressed range from the fundamentals to the description of state-of-the-art of the new types of solar cells.
Publisher: Springer Science & Business Media
ISBN: 3642233686
Category : Technology & Engineering
Languages : en
Pages : 362
Book Description
This book presents new concepts for a next generation of PV. Among these concepts are: Multijunction solar cells, multiple excitation solar cells (or how to take benefit of high energy photons for the creation of more than one electron hole-pair), intermediate band solar cells (or how to take advantage of below band-gap energy photons) and related technologies (for quantum dots, nitrides, thin films), advanced light management approaches (plasmonics). Written by world-class experts in next generation photovoltaics this book is an essential reference guide accessible to both beginners and experts working with solar cell technology. The book deeply analyzes the current state-of-the-art of the new photovoltaic approaches and outlines the implementation paths of these advanced devices. Topics addressed range from the fundamentals to the description of state-of-the-art of the new types of solar cells.
Third Generation Photovoltaics
Author: Martin A. Green
Publisher: Springer Science & Business Media
ISBN: 3540265635
Category : Science
Languages : en
Pages : 163
Book Description
Photovoltaics, the direct conversion of sunlight to electricity, is now the fastest growing technology for electricity generation. Present "first generation" products use the same silicon wafers as in microelectronics. "Second generation" thin-films, now entering the market, have the potential to greatly improve the economics by eliminating material costs. Martin Green, one of the world’s foremost photovoltaic researchers, argues in this book that "second generation" photovoltaics will eventually reach its own material cost constraints, engendering a "third generation" of high performance thin-films. The book explores, self-consistently, the energy conversion potential of advanced approaches for improving photovoltaic performance and outlines possible implementation paths.
Publisher: Springer Science & Business Media
ISBN: 3540265635
Category : Science
Languages : en
Pages : 163
Book Description
Photovoltaics, the direct conversion of sunlight to electricity, is now the fastest growing technology for electricity generation. Present "first generation" products use the same silicon wafers as in microelectronics. "Second generation" thin-films, now entering the market, have the potential to greatly improve the economics by eliminating material costs. Martin Green, one of the world’s foremost photovoltaic researchers, argues in this book that "second generation" photovoltaics will eventually reach its own material cost constraints, engendering a "third generation" of high performance thin-films. The book explores, self-consistently, the energy conversion potential of advanced approaches for improving photovoltaic performance and outlines possible implementation paths.
Advanced Concepts in Photovoltaics
Author: Arthur J. Nozik
Publisher: Royal Society of Chemistry
ISBN: 1849739951
Category : Science
Languages : en
Pages : 631
Book Description
Photovoltaic systems enable the sun’s energy to be converted directly into electricity using semiconductor solar cells. The ultimate goal of photovoltaic research and development is to reduce the cost of solar power to reach or even become lower than the cost of electricity generated from fossil and nuclear fuels. The power conversion efficiency and the cost per unit area of the phototvoltaic system are critical factors that determine the cost of photovoltaic electricity. Until recently, the power conversion efficiency of single-junction photovoltaic cells has been limited to approximately 33% - the so-called Shockley-Queisser limit. This book presents the latest developments in photovoltaics which seek to either reach or surpass the Shockley-Queisser limit, and to lower the cell cost per unit area. Progress toward this ultimate goal is presented for the three generations of photovoltaic cells: the 1st generation based on crystalline silicon semiconductors; the 2nd generation based on thin film silicon, compound semiconductors, amorphous silicon, and various mesoscopic structures; and the 3rd generation based on the unique properties of nanoscale materials, new inorganic and organic photoconversion materials, highly efficient multi-junction cells with low cost solar concentration, and novel photovoltaic processes. The extent to which photovoltaic materials and processes can meet the expectations of efficient and cost effective solar energy conversion to electricity is discussed. Written by an international team of expert contributors, and with researchers in academia, national research laboratories, and industry in mind, this book is a comprehensive guide to recent progress in photovoltaics and essential for any library or laboratory in the field.
Publisher: Royal Society of Chemistry
ISBN: 1849739951
Category : Science
Languages : en
Pages : 631
Book Description
Photovoltaic systems enable the sun’s energy to be converted directly into electricity using semiconductor solar cells. The ultimate goal of photovoltaic research and development is to reduce the cost of solar power to reach or even become lower than the cost of electricity generated from fossil and nuclear fuels. The power conversion efficiency and the cost per unit area of the phototvoltaic system are critical factors that determine the cost of photovoltaic electricity. Until recently, the power conversion efficiency of single-junction photovoltaic cells has been limited to approximately 33% - the so-called Shockley-Queisser limit. This book presents the latest developments in photovoltaics which seek to either reach or surpass the Shockley-Queisser limit, and to lower the cell cost per unit area. Progress toward this ultimate goal is presented for the three generations of photovoltaic cells: the 1st generation based on crystalline silicon semiconductors; the 2nd generation based on thin film silicon, compound semiconductors, amorphous silicon, and various mesoscopic structures; and the 3rd generation based on the unique properties of nanoscale materials, new inorganic and organic photoconversion materials, highly efficient multi-junction cells with low cost solar concentration, and novel photovoltaic processes. The extent to which photovoltaic materials and processes can meet the expectations of efficient and cost effective solar energy conversion to electricity is discussed. Written by an international team of expert contributors, and with researchers in academia, national research laboratories, and industry in mind, this book is a comprehensive guide to recent progress in photovoltaics and essential for any library or laboratory in the field.
Advanced Photovoltaic System Design
Author: John R. Balfour
Publisher: Jones & Bartlett Publishers
ISBN: 1449624693
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
Part of the Art and Science of Photovoltaics series High-performing photovoltaic systems require a design that produces more electricity in kilowatt hours for less cost. The growing demand for such high-performing PV systems calls for trained, skilled PV professionals. Advanced Photovoltaic System Design goes beyond the basics and provides students with the information and knowledge to understand, design, and recognize high-performance PV systems. Every step of the design process adds up incrementally to sizeable and measureable energy production increases, longer system and component lifespans, and less maintenance costs. Advanced Photovoltaic System Design emphasizes the importance of each step of the design process and proper decision-making. About the Series: The Photovoltaics (PV) industry stands on the brink of a revolution. The appeal of a new and growing industry has brought an influx of new PV professionals to the market, but the availability of educational resources has not kept pace with market demands. This gap has led to serious quality and performance issues that the industry will need to face in the decades ahead. The Art and Science of Photovoltaics series was developed to fill this education gap. Each book in the series goes beyond simple systematic processes by tackling performance challenges using a systems perspective. Readers do not learn PV design and installation steps in a vacuum; instead they gain the knowledge and expertise to understand interrelationships and discover new ways to improve their own systems and positively contribute to the industry.
Publisher: Jones & Bartlett Publishers
ISBN: 1449624693
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
Part of the Art and Science of Photovoltaics series High-performing photovoltaic systems require a design that produces more electricity in kilowatt hours for less cost. The growing demand for such high-performing PV systems calls for trained, skilled PV professionals. Advanced Photovoltaic System Design goes beyond the basics and provides students with the information and knowledge to understand, design, and recognize high-performance PV systems. Every step of the design process adds up incrementally to sizeable and measureable energy production increases, longer system and component lifespans, and less maintenance costs. Advanced Photovoltaic System Design emphasizes the importance of each step of the design process and proper decision-making. About the Series: The Photovoltaics (PV) industry stands on the brink of a revolution. The appeal of a new and growing industry has brought an influx of new PV professionals to the market, but the availability of educational resources has not kept pace with market demands. This gap has led to serious quality and performance issues that the industry will need to face in the decades ahead. The Art and Science of Photovoltaics series was developed to fill this education gap. Each book in the series goes beyond simple systematic processes by tackling performance challenges using a systems perspective. Readers do not learn PV design and installation steps in a vacuum; instead they gain the knowledge and expertise to understand interrelationships and discover new ways to improve their own systems and positively contribute to the industry.