Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications

Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications PDF Author: Jorge Arvesœ
Publisher: American Mathematical Soc.
ISBN: 0821868969
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
This volume contains the proceedings of the 11th International Symposium on Orthogonal Polynomials, Special Functions, and their Applications, held August 29-September 2, 2011, at the Universidad Carlos III de Madrid in Leganes, Spain. The papers cover asymptotic properties of polynomials on curves of the complex plane, universality behavior of sequences of orthogonal polynomials for large classes of measures and its application in random matrix theory, the Riemann-Hilbert approach in the study of Pade approximation and asymptotics of orthogonal polynomials, quantum walks and CMV matrices, spectral modifications of linear functionals and their effect on the associated orthogonal polynomials, bivariate orthogonal polynomials, and optimal Riesz and logarithmic energy distribution of points. The methods used include potential theory, boundary values of analytic functions, Riemann-Hilbert analysis, and the steepest descent method.

Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications

Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications PDF Author: Jorge Arvesœ
Publisher: American Mathematical Soc.
ISBN: 0821868969
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
This volume contains the proceedings of the 11th International Symposium on Orthogonal Polynomials, Special Functions, and their Applications, held August 29-September 2, 2011, at the Universidad Carlos III de Madrid in Leganes, Spain. The papers cover asymptotic properties of polynomials on curves of the complex plane, universality behavior of sequences of orthogonal polynomials for large classes of measures and its application in random matrix theory, the Riemann-Hilbert approach in the study of Pade approximation and asymptotics of orthogonal polynomials, quantum walks and CMV matrices, spectral modifications of linear functionals and their effect on the associated orthogonal polynomials, bivariate orthogonal polynomials, and optimal Riesz and logarithmic energy distribution of points. The methods used include potential theory, boundary values of analytic functions, Riemann-Hilbert analysis, and the steepest descent method.

Orthogonal Polynomials and Special Functions

Orthogonal Polynomials and Special Functions PDF Author: Richard Askey
Publisher: SIAM
ISBN: 0898710189
Category : Mathematics
Languages : en
Pages : 115

Get Book Here

Book Description
This volume presents the idea that one studies orthogonal polynomials and special functions to use them to solve problems.

Special Functions

Special Functions PDF Author: George E. Andrews
Publisher: Cambridge University Press
ISBN: 9780521789882
Category : Mathematics
Languages : en
Pages : 684

Get Book Here

Book Description
An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.

Orthogonal Polynomials of Several Variables

Orthogonal Polynomials of Several Variables PDF Author: Charles F. Dunkl
Publisher: Cambridge University Press
ISBN: 1107071895
Category : Mathematics
Languages : en
Pages : 439

Get Book Here

Book Description
Updated throughout, this revised edition contains 25% new material covering progress made in the field over the past decade.

Special Functions and Orthogonal Polynomials

Special Functions and Orthogonal Polynomials PDF Author: Refaat El Attar
Publisher: Lulu.com
ISBN: 1411666909
Category : Mathematics
Languages : en
Pages : 312

Get Book Here

Book Description
(308 Pages). This book is written to provide an easy to follow study on the subject of Special Functions and Orthogonal Polynomials. It is written in such a way that it can be used as a self study text. Basic knowledge of calculus and differential equations is needed. The book is intended to help students in engineering, physics and applied sciences understand various aspects of Special Functions and Orthogonal Polynomials that very often occur in engineering, physics, mathematics and applied sciences. The book is organized in chapters that are in a sense self contained. Chapter 1 deals with series solutions of Differential Equations. Gamma and Beta functions are studied in Chapter 2 together with other functions that are defined by integrals. Legendre Polynomials and Functions are studied in Chapter 3. Chapters 4 and 5 deal with Hermite, Laguerre and other Orthogonal Polynomials. A detailed treatise of Bessel Function in given in Chapter 6.

Special Functions & Their Applications

Special Functions & Their Applications PDF Author: N. N. Lebedev
Publisher: Courier Corporation
ISBN: 0486139891
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Famous Russian work discusses the application of cylinder functions and spherical harmonics; gamma function; probability integral and related functions; Airy functions; hyper-geometric functions; more. Translated by Richard Silverman.

Orthogonal Polynomials

Orthogonal Polynomials PDF Author: Gabor Szegš
Publisher: American Mathematical Soc.
ISBN: 0821810235
Category : Mathematics
Languages : en
Pages : 448

Get Book Here

Book Description
The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.

Lectures on Orthogonal Polynomials and Special Functions

Lectures on Orthogonal Polynomials and Special Functions PDF Author: Howard S. Cohl
Publisher: Cambridge University Press
ISBN: 1108905420
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
Written by experts in their respective fields, this collection of pedagogic surveys provides detailed insight and background into five separate areas at the forefront of modern research in orthogonal polynomials and special functions at a level suited to graduate students. A broad range of topics are introduced including exceptional orthogonal polynomials, q-series, applications of spectral theory to special functions, elliptic hypergeometric functions, and combinatorics of orthogonal polynomials. Exercises, examples and some open problems are provided. The volume is derived from lectures presented at the OPSF-S6 Summer School at the University of Maryland, and has been carefully edited to provide a coherent and consistent entry point for graduate students and newcomers.

Special Functions and Orthogonal Polynomials

Special Functions and Orthogonal Polynomials PDF Author: Richard Beals
Publisher: Cambridge University Press
ISBN: 1107106982
Category : Mathematics
Languages : en
Pages : 489

Get Book Here

Book Description
A comprehensive graduate-level introduction to classical and contemporary aspects of special functions.

Topics in Polynomials of One and Several Variables and Their Applications

Topics in Polynomials of One and Several Variables and Their Applications PDF Author: Themistocles M. Rassias
Publisher: World Scientific
ISBN: 9789810206147
Category : Mathematics
Languages : en
Pages : 658

Get Book Here

Book Description
This volume presents an account of some of the most important work that has been done on various research problems in the theory of polynomials of one and several variables and their applications. It is dedicated to P L Chebyshev, a leading Russian mathematician.