Recent Advances in Magnetic Insulators - From Spintronics to Microwave Applications

Recent Advances in Magnetic Insulators - From Spintronics to Microwave Applications PDF Author:
Publisher: Academic Press
ISBN: 0124080715
Category : Science
Languages : en
Pages : 431

Get Book Here

Book Description
This volume of Solid State Physics provides a broad review on recent advances in the field of magnetic insulators, ranging from new spin effects to thin film growth and high-frequency applications. It covers both theoretical and experimental progress. The topics include the use of magnetic insulators to produce and transfer spin currents, the excitation of spin waves in magnetic insulators by spin transfer torque, interplay between the spin and heat transports in magnetic insulator/normal metal heterostructures, nonlinear spin waves in thin films, development of high-quality nanometer thick films, and applications of magnetic insulators in rf, microwave, and terahertz devices, among others. The volume not only presents introductions and tutorials for those just entering the field, but also provides comprehensive yet timely summaries to specialists in the field. Solid-state physics is the branch of physics primarily devoted to the study of matter in its solid phase, especially at the atomic level. This prestigious series presents timely and state-of-the-art reviews pertaining to all aspects of solid-state physics. - Contributions from leading authorities - Informs and updates on all the latest developments in the field

Recent Advances in Magnetic Insulators - From Spintronics to Microwave Applications

Recent Advances in Magnetic Insulators - From Spintronics to Microwave Applications PDF Author:
Publisher: Academic Press
ISBN: 0124080715
Category : Science
Languages : en
Pages : 431

Get Book Here

Book Description
This volume of Solid State Physics provides a broad review on recent advances in the field of magnetic insulators, ranging from new spin effects to thin film growth and high-frequency applications. It covers both theoretical and experimental progress. The topics include the use of magnetic insulators to produce and transfer spin currents, the excitation of spin waves in magnetic insulators by spin transfer torque, interplay between the spin and heat transports in magnetic insulator/normal metal heterostructures, nonlinear spin waves in thin films, development of high-quality nanometer thick films, and applications of magnetic insulators in rf, microwave, and terahertz devices, among others. The volume not only presents introductions and tutorials for those just entering the field, but also provides comprehensive yet timely summaries to specialists in the field. Solid-state physics is the branch of physics primarily devoted to the study of matter in its solid phase, especially at the atomic level. This prestigious series presents timely and state-of-the-art reviews pertaining to all aspects of solid-state physics. - Contributions from leading authorities - Informs and updates on all the latest developments in the field

Spintronic 2D Materials

Spintronic 2D Materials PDF Author: Wenqing Liu
Publisher: Woodhead Publishing
ISBN: 0081021550
Category : Technology & Engineering
Languages : en
Pages : 322

Get Book Here

Book Description
Spintronic 2D Materials: Fundamentals and Applications provides an overview of the fundamental theory of 2D electronic systems that includes a selection of the most intensively investigated 2D materials. The book tells the story of 2D spintronics in a systematic and comprehensive way, providing the growing community of spintronics researchers with a key reference. Part One addresses the fundamental theoretical aspects of 2D materials and spin transport, while Parts Two through Four explore 2D material systems, including graphene, topological insulators, and transition metal dichalcogenides. Each section discusses properties, key issues and recent developments. In addition, the material growth method (from lab to mass production), device fabrication and characterization techniques are included throughout the book. - Discusses the fundamentals and applications of spintronics of 2D materials, such as graphene, topological insulators and transition metal dichalcogenides - Includes an in-depth look at each materials system, from material growth, device fabrication and characterization techniques - Presents the latest solutions on key challenges, such as the spin lifetime of 2D materials, spin-injection efficiency, the potential proximity effects, and much more

Spintronics for Next Generation Innovative Devices

Spintronics for Next Generation Innovative Devices PDF Author: Katsuaki Sato
Publisher: John Wiley & Sons
ISBN: 1118751914
Category : Technology & Engineering
Languages : en
Pages : 275

Get Book Here

Book Description
Spintronics (short for spin electronics, or spin transport electronics) exploits both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. Controlling the spin of electrons within a device can produce surprising and substantial changes in its properties. Drawing from many cutting edge fields, including physics, materials science, and electronics device technology, spintronics has provided the key concepts for many next generation information processing and transmitting technologies. This book discusses all aspects of spintronics from basic science to applications and covers: • magnetic semiconductors • topological insulators • spin current science • spin caloritronics • ultrafast magnetization reversal • magneto-resistance effects and devices • spin transistors • quantum information devices This book provides a comprehensive introduction to Spintronics for researchers and students in academia and industry.

Magnetic Oxides and Composites

Magnetic Oxides and Composites PDF Author: Rajshree B. Jotania
Publisher: Materials Research Forum LLC
ISBN: 1945291699
Category : Technology & Engineering
Languages : en
Pages : 274

Get Book Here

Book Description
The book focuses on the relevant basic concepts of Magnetic oxides, as well as on synthesis routes and important applications of spinel ferrites, hexaferrites and magnetic oxide nanomaterials. Keywords: Magnetic Oxides, Spinel Ferrites, Hexaferrites, Magnetoelectric Ceramic Composites, Soft Ferrites, Nano-Size Spinel Ferrites, Magnetic Nanoparticles, Device Miniaturization.

Fundamentals of Magnonics

Fundamentals of Magnonics PDF Author: Sergio M. Rezende
Publisher: Springer Nature
ISBN: 3030413179
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
Fundamentals of Magnonics is a textbook for beginning graduate students in the areas of magnetism and spintronics. The level of presentation assumes only basic knowledge of the origin of magnetism and electromagnetism, and quantum mechanics. The book utilizes elementary mathematical derivations, aimed mainly at explaining the physical concepts involved in the phenomena studied and enabling a deeper understanding of the experiments presented. Key topics include the basic phenomena of ferromagnetic resonance in bulk materials and thin films, semi-classical theory of spin waves, quantum theory of spin waves and magnons, magnons in antiferromagnets, parametric excitation of magnons, nonlinear and chaotic phenomena, Bose-Einstein condensation of magnons, and magnon spintronics. Featuring end-of-chapter problem sets accompanied by extensive contemporary and historical references, this book provides the essential tools for any graduate or advanced undergraduate-level course of studies on the emerging field of magnonics.

Magnetism of Surfaces, Interfaces, and Nanoscale Materials

Magnetism of Surfaces, Interfaces, and Nanoscale Materials PDF Author: Robert E. Camley
Publisher: Elsevier
ISBN: 0444626395
Category : Science
Languages : en
Pages : 478

Get Book Here

Book Description
In the past 30 years, magnetic research has been dominated by the question of how surfaces and interfaces influence the magnetic and transport properties of nanostructures, thin films and multilayers. The research has been particularly important in the magnetic recording industry where the giant magnetoresistance effect led to a new generation of storage devices including hand-held memories such as those found in the ipod. More recently, transfer of spin angular momentum across interfaces has opened a new field for high frequency applications.This book gives a comprehensive view of research at the forefront of these fields. The frontier is expanding through dynamic exchange between theory and experiment. Contributions have been chosen to reflect this, giving the reader a unified overview of the topic. - Addresses both theory and experiment that are vital for gaining an essential understanding of topics at the interface between magnetism and materials science - Chapters written by experts provide great insights into complex material - Discusses fundamental background material and state-of-the-art applications, serving as an indispensable guide for students and professionals at all levels of expertise - Stresses interdisciplinary aspects of the field, including physics, chemistry, nanocharacterization, and materials science - Combines basic materials with applications, thus widening the scope of the book and its readership

Springer Handbook of Electronic and Photonic Materials

Springer Handbook of Electronic and Photonic Materials PDF Author: Safa Kasap
Publisher: Springer
ISBN: 331948933X
Category : Technology & Engineering
Languages : en
Pages : 1536

Get Book Here

Book Description
The second, updated edition of this essential reference book provides a wealth of detail on a wide range of electronic and photonic materials, starting from fundamentals and building up to advanced topics and applications. Its extensive coverage, with clear illustrations and applications, carefully selected chapter sequencing and logical flow, makes it very different from other electronic materials handbooks. It has been written by professionals in the field and instructors who teach the subject at a university or in corporate laboratories. The Springer Handbook of Electronic and Photonic Materials, second edition, includes practical applications used as examples, details of experimental techniques, useful tables that summarize equations, and, most importantly, properties of various materials, as well as an extensive glossary. Along with significant updates to the content and the references, the second edition includes a number of new chapters such as those covering novel materials and selected applications. This handbook is a valuable resource for graduate students, researchers and practicing professionals working in the area of electronic, optoelectronic and photonic materials.

Nanocomposite and Nanocrystalline Materials and Coatings

Nanocomposite and Nanocrystalline Materials and Coatings PDF Author: Alexander D. Pogrebnjak
Publisher: Springer Nature
ISBN: 9819726670
Category :
Languages : en
Pages : 242

Get Book Here

Book Description


Solution Methods for Metal Oxide Nanostructures

Solution Methods for Metal Oxide Nanostructures PDF Author: Rajaram S. Mane
Publisher: Elsevier
ISBN: 0323853323
Category : Technology & Engineering
Languages : en
Pages : 448

Get Book Here

Book Description
Solution Methods for Metal Oxide Nanostructures reviews solution processes that are used for synthesizing 1D, 2D and 3D metal oxide nanostructures in either thin film or in powder form for various applications. Wet-chemical synthesis methods deal with chemical reactions in the solution phase using precursors at proper experimental conditions. Wet-chemical synthesis routes offer a high degree of controllability and reproducibility for 2D nanomaterial fabrication. Solvothermal synthesis, template synthesis, self-assembly, oriented attachment, hot-injection, and interface-mediated synthesis are the main wet-chemical synthesis routes for 2D nanomaterials. Solution Methods for Metal Oxide Nanostructures also addresses the thin film deposition metal oxides nanostructures, which plays a very important role in many areas of chemistry, physics and materials science.Each chapter includes information on a key solution method and their application in the design of metal oxide nanostructured materials with optimized properties for important applications. The pros and cons of the solution method and their significance and future scope is also discussed in each chapter. Readers are provided with the fundamental understanding of the key concepts of solution synthesis methods for fabricating materials and the information needed to help them select the appropriate method for the desired application. - Reviews the most relevant wet chemical solution methods for metal oxide nanostructures, including sol-gel, solvothermal, hydrothermal, co-precipitation methods, and more - Addresses thin film deposition techniques for metal oxide nanostructures, such as spray-pyrolysis, electrodeposition, spin coating and self-assembly - Discusses the pros and cons of each solution method and its significance and future opportunities

Spintronics

Spintronics PDF Author: Jean-Philippe Ansermet
Publisher: CRC Press
ISBN: 1040097936
Category : Science
Languages : en
Pages : 802

Get Book Here

Book Description
A sound understanding of magnetism, transport theory, spin relaxation mechanisms, and magnetization dynamics is necessary to engage in spintronics research. In this primer, special effort has been made to give straightforward explanations for these advanced concepts. This book will be a valuable resource for graduate students in spintronics and related fields. Concepts of magnetism such as exchange interaction, spin-orbit coupling, spin canting, and magnetic anisotropy are introduced. Spin-dependent transport is described using both thermodynamics and Boltzmann’s equation, including Berry curvature corrections. Spin relaxation phenomenology is accounted for with master equations for quantum spin systems coupled to a bath. Magnetic resonance principles are applied to describe spin waves in ferromagnets, cavity-mode coupling in antiferromagnets, and coherence phenomena relevant to spin qubits applications. Key Features: • A pedagogical approach to foundational concepts in spintronics with simple models that can be calculated to enhance understanding. • Nineteen chapters, each beginning with a historical perspective and ending with an outlook on current research. • 1200 references, ranging from landmark papers to frontline publications. Jean-Philippe Ansermet is Professor Emeritus at École Polytechnique Fédérale de Lausanne (EPFL), where he pioneered experiments on giant magnetoresistance, current-induced magnetization switching, heat-driven spin torque, and nuclear magnetic resonance. He taught mechanics, thermodynamics, and spin dynamics for more than twenty years. A fellow of the American Physical Society and recipient of the 2022 Credit Suisse Teaching Award, he was an executive board member of the European Physical Society, president of the Swiss Physical Society, and teaching director at EPFL. He has authored or co-authored textbooks on mechanics and thermodynamics and published more than two hundred articles.