Real Time Programming

Real Time Programming PDF Author: Rudrapatna Shyamasundar
Publisher: World Scientific
ISBN: 9812814027
Category : Computers
Languages : en
Pages : 262

Get Book Here

Book Description
Pt. I. Real time systems - background. 1. Real time system characteristics. 1.1. Real-time and reactive programs. 2. Formal program development methodologies. 2.1. Requirement specification. 2.2. System specifications. 3. Characteristics of real-time languages. 3.1. Modelling features of real-time languages. 3.2. A look at classes of real-time languages. 4. Programming characteristics of reactive systems. 4.1. Execution of reactive programs. 4.2. Perfect synchrony hypothesis. 4.3. Multiform notion of time. 4.4. Logical concurrency and broadcast communication. 4.5. Determinism and causality -- pt. II. Synchronous languages. 5. ESTEREL language : structure. 5.1. Top level structure. 5.2. ESTEREL statements. 5.3. Illustrations of ESTEREL program behaviour. 5.4. Causality problems. 5.5. A historical perspective. 6. Program development in ESTEREL. 6.1. A simulation environment. 6.2. Verification environment. 7. Programming controllers in ESTEREL. 7.1. Auto controllers. 8. Asynchronous interaction in ESTEREL -- 9. Futurebus arbitration protocol : a case study. 9.1. Arbitration process. 9.2. Abstraction of the protocol. 9.3. Solution in ESTEREL -- 10. Semantics of ESTEREL. 10.1. Semantic structure. 10.2. Transition rules. 10.3. Illustrative examples. 10.4. Discussions. 10.5. Semantics of Esterel with exec -- pt. III. Other synchronous languages. 11. Synchronous language LUSTRE. 11.1. An overview of LUSTRE. 11.2. Flows and streams. 11.3. Equations, variables and expressions. 11.4. Program structure. 11.5. Arrays in LUSTRE. 11.6. Further examples. 12. Modelling Time-Triggered Protocol (TTP) in LUSTRE. 12.1. Time-triggered protocol. 12.2. Modelling TTP in LUSTRE. 13. Synchronous language ARGOS. 13.1. ARGOS constructs. 13.2. Illustrative example. 13.3. Discussions -- pt. IV. Verification of synchronous programs. 14. Verification of ESTEREL programs. 14.1. Transition system based verificationy of ESTEREL Programs. 14.2. ESTEREL transition system. 14.3. Temporal logic based verification. 14.4. Observer-based verification. 14.5. First order logic based verification. 15. Observer based verification of simple LUSTRE programs. 15.1. A simple auto controller. 15.2. A complex controller. 15.3. A cruise controller. 15.4. A train controller. 15.5. A mine pump controller -- pt. V. Integration of synchrony and asynchrony. 16. Communicating reactive processes. 16.1. An overview of CRP. 16.2. Communicating reactive processes : structure. 16.3. Behavioural semantics of CRP. 16.4. An illustrative example : banker teller machine. 16.5. Implementation of CRP. 17. Semantics of communicating reactive processes. 17.1. A brief overview of CSP. 17.2. Translation of CSP to CRP. 17.3. Cooperation of CRP nodes. 17.4. Ready-trace semantics of CRP. 17.5. Ready-trace semantics of CSP. 17.6. Extracting CSP ready-trace semantics from CRP semantics. 17.7. Correctness of the translation. 17.8. Translation into MEIJE process calculus. 18. Communicating reactive state machines. 18.1. CRSM constructs. 18.2. Semantics of CRSM. 19. Multiclock ESTEREL. 19.1. Need for a multiclock synchronous paradigm. 19.2. Informal introduction. 19.3. Formal semantics. 19.4. Embedding CRP. 19.5. Modelling a VHDL subset. 19.6. Discussion. 20. Modelling real-time systems in ESTEREL. 20.1. Interpretation of a global clock in terms of exec. 20.2. Modelling real-time requirements. 21. Putting it together

Real Time Programming

Real Time Programming PDF Author: Rudrapatna Shyamasundar
Publisher: World Scientific
ISBN: 9812814027
Category : Computers
Languages : en
Pages : 262

Get Book Here

Book Description
Pt. I. Real time systems - background. 1. Real time system characteristics. 1.1. Real-time and reactive programs. 2. Formal program development methodologies. 2.1. Requirement specification. 2.2. System specifications. 3. Characteristics of real-time languages. 3.1. Modelling features of real-time languages. 3.2. A look at classes of real-time languages. 4. Programming characteristics of reactive systems. 4.1. Execution of reactive programs. 4.2. Perfect synchrony hypothesis. 4.3. Multiform notion of time. 4.4. Logical concurrency and broadcast communication. 4.5. Determinism and causality -- pt. II. Synchronous languages. 5. ESTEREL language : structure. 5.1. Top level structure. 5.2. ESTEREL statements. 5.3. Illustrations of ESTEREL program behaviour. 5.4. Causality problems. 5.5. A historical perspective. 6. Program development in ESTEREL. 6.1. A simulation environment. 6.2. Verification environment. 7. Programming controllers in ESTEREL. 7.1. Auto controllers. 8. Asynchronous interaction in ESTEREL -- 9. Futurebus arbitration protocol : a case study. 9.1. Arbitration process. 9.2. Abstraction of the protocol. 9.3. Solution in ESTEREL -- 10. Semantics of ESTEREL. 10.1. Semantic structure. 10.2. Transition rules. 10.3. Illustrative examples. 10.4. Discussions. 10.5. Semantics of Esterel with exec -- pt. III. Other synchronous languages. 11. Synchronous language LUSTRE. 11.1. An overview of LUSTRE. 11.2. Flows and streams. 11.3. Equations, variables and expressions. 11.4. Program structure. 11.5. Arrays in LUSTRE. 11.6. Further examples. 12. Modelling Time-Triggered Protocol (TTP) in LUSTRE. 12.1. Time-triggered protocol. 12.2. Modelling TTP in LUSTRE. 13. Synchronous language ARGOS. 13.1. ARGOS constructs. 13.2. Illustrative example. 13.3. Discussions -- pt. IV. Verification of synchronous programs. 14. Verification of ESTEREL programs. 14.1. Transition system based verificationy of ESTEREL Programs. 14.2. ESTEREL transition system. 14.3. Temporal logic based verification. 14.4. Observer-based verification. 14.5. First order logic based verification. 15. Observer based verification of simple LUSTRE programs. 15.1. A simple auto controller. 15.2. A complex controller. 15.3. A cruise controller. 15.4. A train controller. 15.5. A mine pump controller -- pt. V. Integration of synchrony and asynchrony. 16. Communicating reactive processes. 16.1. An overview of CRP. 16.2. Communicating reactive processes : structure. 16.3. Behavioural semantics of CRP. 16.4. An illustrative example : banker teller machine. 16.5. Implementation of CRP. 17. Semantics of communicating reactive processes. 17.1. A brief overview of CSP. 17.2. Translation of CSP to CRP. 17.3. Cooperation of CRP nodes. 17.4. Ready-trace semantics of CRP. 17.5. Ready-trace semantics of CSP. 17.6. Extracting CSP ready-trace semantics from CRP semantics. 17.7. Correctness of the translation. 17.8. Translation into MEIJE process calculus. 18. Communicating reactive state machines. 18.1. CRSM constructs. 18.2. Semantics of CRSM. 19. Multiclock ESTEREL. 19.1. Need for a multiclock synchronous paradigm. 19.2. Informal introduction. 19.3. Formal semantics. 19.4. Embedding CRP. 19.5. Modelling a VHDL subset. 19.6. Discussion. 20. Modelling real-time systems in ESTEREL. 20.1. Interpretation of a global clock in terms of exec. 20.2. Modelling real-time requirements. 21. Putting it together

Real Time Programming: Languages, Specification And Verification

Real Time Programming: Languages, Specification And Verification PDF Author: S Ramesh
Publisher: World Scientific
ISBN: 9814499315
Category : Computers
Languages : en
Pages : 262

Get Book Here

Book Description
The primary aim of this monograph is to present the current research efforts that have gone into/or going on in the systematic design of real-time programs. Such an effort would help researchers and users in the area to get a clear picture of the issues of specification, verification and design of real-time reactive programs. It will clearly enable us to identify languages that can be used for different kinds of applications. Obviously, in an upcoming area like this, this presentation is far from complete.The quintessence of the monograph can be captured by the following question:How can we design and develop Robust Reactive (real-time) Programs?We address this question in this monograph through the various underlying issues listed, such as characteristics of real-time/reactive programs, reactive programming languages, verification and refinements.

Specification and Compositional Verification of Real-Time Systems

Specification and Compositional Verification of Real-Time Systems PDF Author: Jozef Hooman
Publisher: Springer Science & Business Media
ISBN: 9783540549475
Category : Computers
Languages : en
Pages : 254

Get Book Here

Book Description
The research described in this monograph concerns the formal specification and compositional verification of real-time systems. A real-time programminglanguage is considered in which concurrent processes communicate by synchronous message passing along unidirectional channels. To specifiy functional and timing properties of programs, two formalisms are investigated: one using a real-time version of temporal logic, called Metric Temporal Logic, and another which is basedon extended Hoare triples. Metric Temporal Logic provides a concise notationto express timing properties and to axiomatize the programming language, whereas Hoare-style formulae are especially convenient for the verification of sequential constructs. For both approaches a compositional proof system has been formulated to verify that a program satisfies a specification. To deduce timing properties of programs, first maximal parallelism is assumed, modeling the situation in which each process has itsown processor. Next, this model is generalized to multiprogramming where several processes may share a processor and scheduling is based on priorities. The proof systems are shown to be sound and relatively complete with respect to a denotational semantics of the programming language. The theory is illustrated by an example of a watchdog timer.

Specification and Compositional Verification of Real-Time Systems

Specification and Compositional Verification of Real-Time Systems PDF Author: Jozef Hooman
Publisher: Springer
ISBN: 9783662161678
Category : Computers
Languages : en
Pages : 242

Get Book Here

Book Description
The research described in this monograph concerns the formal specification and compositional verification of real-time systems. A real-time programminglanguage is considered in which concurrent processes communicate by synchronous message passing along unidirectional channels. To specifiy functional and timing properties of programs, two formalisms are investigated: one using a real-time version of temporal logic, called Metric Temporal Logic, and another which is basedon extended Hoare triples. Metric Temporal Logic provides a concise notationto express timing properties and to axiomatize the programming language, whereas Hoare-style formulae are especially convenient for the verification of sequential constructs. For both approaches a compositional proof system has been formulated to verify that a program satisfies a specification. To deduce timing properties of programs, first maximal parallelism is assumed, modeling the situation in which each process has itsown processor. Next, this model is generalized to multiprogramming where several processes may share a processor and scheduling is based on priorities. The proof systems are shown to be sound and relatively complete with respect to a denotational semantics of the programming language. The theory is illustrated by an example of a watchdog timer.

Real-time Systems and Their Programming Languages

Real-time Systems and Their Programming Languages PDF Author: Alan Burns
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 600

Get Book Here

Book Description
A survey of real-time systems and the programming languages used in their development. Shows how modern real-time programming techniques are used in a wide variety of applications, including robotics, factory automation, and control. A critical requirement for such systems is that the software must

Specifying, Predicting, and Verifying the Timing Properties of Hard- Real-Time Programming Languages and Systems

Specifying, Predicting, and Verifying the Timing Properties of Hard- Real-Time Programming Languages and Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Get Book Here

Book Description
The major research accomplishments supported by the grant were: (1) predicting the Deterministic Timing Behavior of Programs. Much work was done in developing concepts and techniques to predict the deterministic execution times of sequential and parallel programs. This also included substantial experimental work and the construction of software tools to validate our ideas and methodology, especially for sequential programs. The basis for this work was our notion of source program timing schema that provided a machine-independent timing semantics for higher-level language software. (2) Specifying Requirements and Designs for Real-Time Systems. A new specification method, called communicating real-time state machines, was invented for describing requirements and designs of distributed real-time systems. (3) Other Research - We designed a methodology for the software engineering of real-time operating systems, based on a straightforward process/abstract-data-type (object) model, and built an operating system kernel using our scheme.

Languages for System Specification

Languages for System Specification PDF Author: Christoph Grimm
Publisher: Springer Science & Business Media
ISBN: 1402079915
Category : Computers
Languages : en
Pages : 353

Get Book Here

Book Description
Contributions on UML address the application of UML in the specification of embedded HW/SW systems. C-Based System Design embraces the modeling of operating systems, modeling with different models of computation, generation of test patterns, and experiences from case studies with SystemC. Analog and Mixed-Signal Systems covers rules for solving general modeling problems in VHDL-AMS, modeling of multi-nature systems, synthesis, and modeling of Mixed-Signal Systems with SystemC. Languages for formal methods are addressed by contributions on formal specification and refinement of hybrid, embedded and real-time stems. Together with articles on new languages such as SystemVerilog and Software Engineering in Automotive Systems the contributions selected for this book embrace all aspects of languages and models for specification, design, modeling and verification of systems. Therefore, the book gives an excellent overview of the actual state-of-the-art and the latest research results.

Real-Time Java Programming

Real-Time Java Programming PDF Author: Eric J. Bruno
Publisher: Pearson Education
ISBN: 0137042582
Category : Computers
Languages : en
Pages : 738

Get Book Here

Book Description
The Definitive Guide to Java RTS for Developers and Architects For Java developers and architects moving to real-time, and real-time developers moving to Java Walks through start-to-finish case study applications, identifying their constraints and discussing the APIs and design patterns used to address them Written by the former leader of the real-time Java standards process and one of Wall Street’s top real-time developers Sun Microsystems’ Java Real-Time System (Java RTS) is proving itself in numerous, wide-ranging environments, including finance, control systems, manufacturing, and defense. Java RTS and the RTSJ standard (JSR-001) eliminate the need for complicated, specialized, real-time languages and operating environments, saving money by leveraging Java’s exceptional productivity and familiarity. In Real-Time Java™ Programming, two of Sun’s top real-time programming experts present the deep knowledge and realistic code examples that developers need to succeed with Java RTS and its APIs. As they do so, the authors also illuminate the foundations of real-time programming in any RTSJ-compatible environment. Key topics include Real-time principles and concepts, and the unique requirements of real-time application design and development How Java has been adapted to real-time environments A complete chapter on garbage collection concepts and Java SE collectors Using the Java RTS APIs to solve actual real-time system problems as efficiently as possible Utilizing today’s leading Java RTS development and debugging tools Understanding real-time garbage collection, threads, scheduling, and dispatching Programming new RTSJ memory models Dealing with asynchronous event handling and asynchronous transfer of control

Programming Languages and Systems

Programming Languages and Systems PDF Author: Kwangkeun Yi
Publisher: Springer Science & Business Media
ISBN: 3540297359
Category : Computers
Languages : en
Pages : 445

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Third Asian Symposium on Programming Languages and Systems, APLAS 2005, held in Tsukuba, Japan in November 2005. The 24 revised full papers presented together with 3 invited talks were carefully reviewed and selected from 78 submissions. Among the topics covered are semantics, type theory, program transformation, static analysis, verification, programming calculi, functional programming languages, language based security, real-time systems, embedded systems, formal systems design, Java objects, program analysis and optimization.

Real-Time Systems

Real-Time Systems PDF Author: Ernst-Rüdiger Olderog
Publisher: Cambridge University Press
ISBN: 113947460X
Category : Computers
Languages : en
Pages : 320

Get Book Here

Book Description
Real-time systems need to react to certain input stimuli within given time bounds. For example, an airbag in a car has to unfold within 300 milliseconds in a crash. There are many embedded safety-critical applications and each requires real-time specification techniques. This text introduces three of these techniques, based on logic and automata: duration calculus, timed automata, and PLC-automata. The techniques are brought together to form a seamless design flow, from real-time requirements specified in the duration calculus; via designs specified by PLC-automata; and into source code for hardware platforms of embedded systems. The syntax, semantics, and proof methods of the specification techniques are introduced; their most important properties are established; and real-life examples illustrate their use. Detailed case studies and exercises conclude each chapter. Ideal for students of real-time systems or embedded systems, this text will also be of great interest to researchers and professionals in transportation and automation.