Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I

Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I PDF Author: Marcel Schlaf
Publisher: Springer
ISBN: 981287688X
Category : Science
Languages : en
Pages : 268

Get Book Here

Book Description
Volume I mainly focuses on the current understanding of the reaction pathways and mechanisms involved in several important catalytic conversions of cellulose and carbohydrates. It starts with nanoscale illustrations of biomass structures and describes various reactions including cellulose depolymerization to sugars, catalytic aldose-ketose isomerization and dehydration, selective oxidation, hydrogenolysis of cellulose and sugars, and the conversion of short carbohydrates. The specificity and function of different catalysts and reaction media in relation to the catalytic performances for these reactions are discussed with significant mechanistic details. Marcel Schlaf, PhD, is a Professor at the Department of Chemistry, University of Guelph, Canada. Z. Conrad Zhang, PhD, is a Professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.

Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II

Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II PDF Author: Marcel Schlaf
Publisher: Springer
ISBN: 981287769X
Category : Technology & Engineering
Languages : en
Pages : 206

Get Book Here

Book Description
Volume II presents the latest advances in catalytic hydrodeoxygenation and other transformations of some cellulosic platform chemicals to high value-added products. It presents the theoretical evaluation of the energetics and catalytic species involved in potential pathways of catalyzed carbohydrate conversion, pathways leading to the formation of humin-based by-products, and thermal pathways in deriving chemicals from lignin pyrolysis and hydrodeoxygenation. Catalytic gasification of biomass under extreme thermal conditions as an extension of pyrolysis is also discussed. Marcel Schlaf, PhD, is a Professor at the Department of Chemistry, University of Guelph, Canada. Z. Conrad Zhang, PhD, is a Professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.

Nanoporous Catalysts for Biomass Conversion

Nanoporous Catalysts for Biomass Conversion PDF Author: Feng-Shou Xiao
Publisher: John Wiley & Sons
ISBN: 1119128102
Category : Science
Languages : en
Pages : 416

Get Book Here

Book Description
A comprehensive introduction to the design, synthesis, characterization, and catalytic properties of nanoporous catalysts for the biomass conversion With the specter of peak oil demand looming on the horizon, and mounting concerns over the environmental impact of greenhouse gas emissions, biomass has taken on a prominent role as a sustainable alternative fuel source. One critical aspect of the biomass challenge is the development of novel catalytic materials for effective and controllable biomass conversion. Edited by two scientists recognized internationally for their pioneering work in the field, this book focuses on nanoporous catalysts, the most promising class of catalytic materials for the conversion of biomass into fuel and other products. Although various catalysts have been used in the conversion of biomass-derived feedstocks, nanoporous catalysts exhibit high catalytic activities and/or unique product selectivities due to their large surface area, open nanopores, and highly dispersed active sites. This book covers an array of nanoporous catalysts currently in use for biomass conversion, including resins, metal oxides, carbons, mesoporous silicates, polydivinylbenzene, and zeolites. The authors summarize the design, synthesis, characterization and catalytic properties of these nanoporous catalysts for biomass conversions, discussing the features of these catalysts and considering future opportunities for developing more efficient catalysts. Topics covered include: Resins for biomass conversion Supported metal oxides/sulfides for biomass oxidation and hydrogenation Nanoporous metal oxides Ordered mesoporous silica-based catalysts Sulfonated carbon catalysts Porous polydivinylbenzene Aluminosilicate zeolites for bio-oil upgrading Rice straw Hydrogenation for sugar conversion Lignin depolymerization Timely, authoritative, and comprehensive, Nanoporous Catalysts for Biomass Conversion is a valuable working resource for academic researchers, industrial scientists and graduate students working in the fields of biomass conversion, catalysis, materials science, green and sustainable chemistry, and chemical/process engineering.

A Study on Catalytic Conversion of Non-Food Biomass into Chemicals

A Study on Catalytic Conversion of Non-Food Biomass into Chemicals PDF Author: Mizuho Yabushita
Publisher: Springer
ISBN: 9811003327
Category : Science
Languages : en
Pages : 171

Get Book Here

Book Description
The topic of this thesis is catalytic conversion of non-food, abundant, and renewable biomass such as cellulose and chitin to chemicals. In biorefinery, chemical transformation of polymers to valuable compounds has attracted worldwide interest for building sustainable societies. First, the current situation of this hot research area has been summarized well in the general introduction of the thesis, which helps readers to become familiar with this topic. Next, the author explains high-yielding production of glucose from cellulose by using an alkali-activated carbon as a catalyst, resulting in a yield of glucose as high as 88%, which is one of the highest yields ever reported. The characterization of carbon materials has indicated that weak acid sites on the catalyst promote the reaction, which is markedly different from reported catalytic systems that require strong acids. In addition, the first catalytic transformation of chitin with retention of N-acetyl groups has been developed. The combination of mechanocatalytic hydrolysis and thermal solvolysis enables the production of N-acetylated monomers in good yields of up to 70%. The catalytic systems demonstrated in this thesis are unique in the fields of both chemistry and chemical engineering, and their high efficiencies can contribute to green and sustainable chemistry in the future. Meanwhile, mechanistic studies based on characterization, thermodynamics, kinetics, and model reactions have also been performed to reveal the roles of catalysts during the reactions. The results will be helpful for readers to design and develop new catalysts and reaction systems.

Production of Biofuels and Chemicals with Bifunctional Catalysts

Production of Biofuels and Chemicals with Bifunctional Catalysts PDF Author: Zhen Fang
Publisher: Springer
ISBN: 9811051372
Category : Medical
Languages : en
Pages : 396

Get Book Here

Book Description
This book provides state-of-the-art reviews, current research, prospects and challenges of the production of biofuels and chemicals such as furanic biofuels, biodiesel, carboxylic acids, polyols and others from lignocellulosic biomass, furfurals, syngas and γ-valerolactone with bifunctional catalysts, including catalytic, and combined biological and chemical catalysis processes. The bifunctionality of catalytic materials is a concept of not only using multifunctional solid materials as activators, but also design of materials in such a way that the catalytic materials have synergistic characteristics that promote a cascade of transformations with performance beyond that of mixed mono-functional catalysts. This book is a reference designed for researchers, academicians and industrialists in the area of catalysis, energy, chemical engineering and biomass conversion. Readers will find the wealth of information contained in chapters both useful and essential, for assessing the production and application of various biofuels and chemicals by chemical catalysis and biological techniques.

Chemical Catalysts for Biomass Upgrading

Chemical Catalysts for Biomass Upgrading PDF Author: Mark Crocker
Publisher: John Wiley & Sons
ISBN: 3527344667
Category : Technology & Engineering
Languages : en
Pages : 634

Get Book Here

Book Description
A comprehensive reference to the use of innovative catalysts and processes to turn biomass into value-added chemicals Chemical Catalysts for Biomass Upgrading offers detailed descriptions of catalysts and catalytic processes employed in the synthesis of chemicals and fuels from the most abundant and important biomass types. The contributors?noted experts on the topic?focus on the application of catalysts to the pyrolysis of whole biomass and to the upgrading of bio-oils. The authors discuss catalytic approaches to the processing of biomass-derived oxygenates, as exemplified by sugars, via reactions such as reforming, hydrogenation, oxidation, and condensation reactions. Additionally, the book provides an overview of catalysts for lignin valorization via oxidative and reductive methods and considers the conversion of fats and oils to fuels and terminal olefins by means of esterification/transesterification, hydrodeoxygenation, and decarboxylation/decarbonylation processes. The authors also provide an overview of conversion processes based on terpenes and chitin, two emerging feedstocks with a rich chemistry, and summarize some of the emerging trends in the field. This important book: -Provides a comprehensive review of innovative catalysts, catalytic processes, and catalyst design -Offers a guide to one of the most promising ways to find useful alternatives for fossil fuel resources -Includes information on the most abundant and important types of biomass feedstocks -Examines fields such as catalytic cracking, pyrolysis, depolymerization, and many more Written for catalytic chemists, process engineers, environmental chemists, bioengineers, organic chemists, and polymer chemists, Chemical Catalysts for Biomass Upgrading presents deep insights on the most important aspects of biomass upgrading and their various types.

Plant Biomass Derived Materials

Plant Biomass Derived Materials PDF Author: Seiko Jose
Publisher: John Wiley & Sons
ISBN: 352783902X
Category : Science
Languages : en
Pages : 629

Get Book Here

Book Description
Plant Biomass Derived Materials Comprehensive overview of materials derived from biomass, including extraction techniques, important building blocks, and a wide range of applications Plant Biomass Derived Materials provides insights into the different sources and kinds of biomass and covers a variety of techniques to derive important building blocks from raw resources; after foundational knowledge is covered, the text continues to discuss a comprehensive list of materials and applications, ranging from nanomaterials, polymers, enzymes, dyes, and composites, to applications in energy, biomedical, water purification, aeronautics, automotive and food applications, and more. Written by four highly qualified authors with significant experience in both industry and academia, Plant Biomass Derived Materials includes information on: Biomass and its relationship to the environment, chemistry of biomass, lignin and starch, and recent trends of cashew nutshell liquid in the field Plant biomass mucilage, plant based colorants, revival of sustainable fungal based natural pigments, and algal-based natural pigments for textiles Biorefinery from plant biomass (including a case study in sugarcane straw), forest and agricultural biomass, and manufacture of monomers and precursors Chemical routes for the transformation of bio-monomers into polymers and manufacture of polymer composites from plant fibers Providing foundational knowledge on the subject and a wide array of specific applications of biomass, Plant Biomass Derived Materials is an essential resource for chemists, materials scientists, and all academics and professionals in fields that intersect with biomass: an abundant renewable resource used for many diverse purposes.

Biofuels and Bioenergy

Biofuels and Bioenergy PDF Author: Baskar Gurunathan
Publisher: Elsevier
ISBN: 032388556X
Category : Science
Languages : en
Pages : 840

Get Book Here

Book Description
Biofuels and Bioenergy: A Techno-Economic Approach provides an in-depth analysis of the economic aspects of biofuels production from renewable feedstock. Taking a biorefinery approach, the book analyzes a wide range of feedstocks, processes and products, including common biofuels such as bioethanol, biobutanol, biooil and biodiesel, feedstocks such as lignocellulosic biomass, non-edible feedstocks like vegetable oils, algae and microbial lipids, and solid and liquid wastes, performance assessments of biodiesel in diesel engine, and the latest developments in catalytic conversion and microbial electrosynthesis technologies. This book offers valuable insights into the commercial feasibility of biofuels products for researchers and students working in the area of bioenergy and renewable energy, but it is also ideal for practicing engineers in the biorefinery and biofuel industry who are looking to develop commercial products. - Focuses on an in-depth, techno-economic analysis of biofuel and bioenergy products, including all important feedstocks, processes and products, all of which are supported by industry case studies - Includes environmental impacts and lifecycle assessments of biofuels production alongside techno-economic analyses - Provides a critical guide to assessing the commercial viability and feasibility of bioenergy production from renewable sources

The Organometallic Chemistry of the Transition Metals

The Organometallic Chemistry of the Transition Metals PDF Author: Robert H. Crabtree
Publisher: John Wiley & Sons
ISBN: 1119465885
Category : Science
Languages : en
Pages : 466

Get Book Here

Book Description
Provides vital information on organometallic compounds, their preparation, and use in synthesis, and explores the fundamentals of the field and its modern applications Fully updated and expanded to reflect recent advances, the new, seventh edition of this bestselling text presents students and professional chemists with a comprehensive introduction to the principles and general properties of organometallic compounds, as well as including practical information on reaction mechanisms and detailed descriptions of contemporary applications. Increased focus is given to organic synthesis applications, nanoparticle science, and green chemistry. This edition features up-to-date examples of fundamental reaction steps and greater emphasis on key topics like oxidation catalysis, CH functionalization, nanoclusters and nanoparticles, and green chemistry. New coverage is added for computational chemistry, energy production, and biochemical aspects of organometallic chemistry. The Organometallic Chemistry of the Transition Metals, Seventh Edition provides new/enhanced chapter coverage of ligand-assisted additions and eliminations; proton-coupled electron transfer; surface, supported, and cooperative catalysis; green, energy, and materials applications; and photoredox catalysis. It covers coordination chemistry; alkyls and hydrides; Pi-complexes; and oxidative addition and reductive elimination. The book also features sections on insertion and elimination; spectroscopy; metathesis polymerization and bond activation; and more. Provides an excellent foundation of the fundamentals of organometallic chemistry Includes end-of-chapter problems and their solutions Expands and includes up-to-date examples of fundamental reaction steps and focuses on important topics such as oxidation catalysis, CH functionalization, nanoparticles, and green chemistry Features all new coverage for computational chemistry, energy production, and biochemical aspects of organometallic chemistry The Organometallic Chemistry of the Transition Metals, Seventh Edition is an insightful book that will appeal to all advanced undergraduate and graduate students in organic chemistry, organometallic chemistry, inorganic chemistry, and bioinorganic chemistry, as well as any practicing chemist in those fields.

Production of Biofuels and Chemicals with Pyrolysis

Production of Biofuels and Chemicals with Pyrolysis PDF Author: Zhen Fang
Publisher: Springer Nature
ISBN: 9811527326
Category : Medical
Languages : en
Pages : 456

Get Book Here

Book Description
This book presents a collection of studies on state-of-art techniques for converting biomass to chemical products by means of pyrolysis, which are widely applicable to the valorization of biomass. In addition to discussing the fundamentals and mechanisms for producing bio-oils, chemicals, gases and biochar using pyrolysis, it outlines key reaction parameters and reactor configurations for various types of biomass. Written by leading experts and providing a broad range of perspectives on cutting-edge applications, the book is a comprehensive reference guide for academic researchers and industrial engineers in the fields of natural renewable materials, biorefinery of lignocellulose, biofuels, and environmental engineering, and a valuable resource for university students in the fields of chemical engineering, material science and environmental engineering.