Author: Joseph Ray
Publisher:
ISBN:
Category : Algebra
Languages : en
Pages : 252
Book Description
Ray's Algebra, First Book
Author: Joseph Ray
Publisher:
ISBN:
Category : Algebra
Languages : en
Pages : 252
Book Description
Publisher:
ISBN:
Category : Algebra
Languages : en
Pages : 252
Book Description
Ray's New Primary Arithmetic
Author: Joseph Ray
Publisher: Ravenio Books
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 162
Book Description
In 19th century America, Joseph Ray was the McGuffey of arithmetic. His textbooks, used throughout the United States, laid the mathematical foundations for the generations of inventors, engineers and businessmen who would make the nation a world power.
Publisher: Ravenio Books
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 162
Book Description
In 19th century America, Joseph Ray was the McGuffey of arithmetic. His textbooks, used throughout the United States, laid the mathematical foundations for the generations of inventors, engineers and businessmen who would make the nation a world power.
Linear Algebra
Author: Kenneth Hoffman
Publisher:
ISBN: 9789332550070
Category : Algebras, Linear
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9789332550070
Category : Algebras, Linear
Languages : en
Pages : 0
Book Description
Advanced Linear Algebra
Author: Steven Roman
Publisher: Springer Science & Business Media
ISBN: 038727474X
Category : Mathematics
Languages : en
Pages : 488
Book Description
Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra
Publisher: Springer Science & Business Media
ISBN: 038727474X
Category : Mathematics
Languages : en
Pages : 488
Book Description
Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra
A Course in Constructive Algebra
Author: Ray Mines
Publisher: Springer Science & Business Media
ISBN: 1441986405
Category : Mathematics
Languages : en
Pages : 355
Book Description
The constructive approach to mathematics has enjoyed a renaissance, caused in large part by the appearance of Errett Bishop's book Foundations of constr"uctiue analysis in 1967, and by the subtle influences of the proliferation of powerful computers. Bishop demonstrated that pure mathematics can be developed from a constructive point of view while maintaining a continuity with classical terminology and spirit; much more of classical mathematics was preserved than had been thought possible, and no classically false theorems resulted, as had been the case in other constructive schools such as intuitionism and Russian constructivism. The computers created a widespread awareness of the intuitive notion of an effecti ve procedure, and of computation in principle, in addi tion to stimulating the study of constructive algebra for actual implementation, and from the point of view of recursive function theory. In analysis, constructive problems arise instantly because we must start with the real numbers, and there is no finite procedure for deciding whether two given real numbers are equal or not (the real numbers are not discrete) . The main thrust of constructive mathematics was in the direction of analysis, although several mathematicians, including Kronecker and van der waerden, made important contributions to construc tive algebra. Heyting, working in intuitionistic algebra, concentrated on issues raised by considering algebraic structures over the real numbers, and so developed a handmaiden'of analysis rather than a theory of discrete algebraic structures.
Publisher: Springer Science & Business Media
ISBN: 1441986405
Category : Mathematics
Languages : en
Pages : 355
Book Description
The constructive approach to mathematics has enjoyed a renaissance, caused in large part by the appearance of Errett Bishop's book Foundations of constr"uctiue analysis in 1967, and by the subtle influences of the proliferation of powerful computers. Bishop demonstrated that pure mathematics can be developed from a constructive point of view while maintaining a continuity with classical terminology and spirit; much more of classical mathematics was preserved than had been thought possible, and no classically false theorems resulted, as had been the case in other constructive schools such as intuitionism and Russian constructivism. The computers created a widespread awareness of the intuitive notion of an effecti ve procedure, and of computation in principle, in addi tion to stimulating the study of constructive algebra for actual implementation, and from the point of view of recursive function theory. In analysis, constructive problems arise instantly because we must start with the real numbers, and there is no finite procedure for deciding whether two given real numbers are equal or not (the real numbers are not discrete) . The main thrust of constructive mathematics was in the direction of analysis, although several mathematicians, including Kronecker and van der waerden, made important contributions to construc tive algebra. Heyting, working in intuitionistic algebra, concentrated on issues raised by considering algebraic structures over the real numbers, and so developed a handmaiden'of analysis rather than a theory of discrete algebraic structures.
Ray's New Practical Arithmetic
Author: Joseph Ray
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 402
Book Description
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 402
Book Description
Linear Algebra Via Exterior Products
Author: Sergei Winitzki
Publisher: Sergei Winitzki
ISBN: 140929496X
Category : Science
Languages : en
Pages : 286
Book Description
This is a pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the array-based formalism of vector and matrix calculations. This book makes extensive use of the exterior (anti-commutative, "wedge") product of vectors. The coordinate-free formalism and the exterior product, while somewhat more abstract, provide a deeper understanding of the classical results in linear algebra. Without cumbersome matrix calculations, this text derives the standard properties of determinants, the Pythagorean formula for multidimensional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton theorem, the Jordan canonical form, the properties of Pfaffians, as well as some generalizations of these results.
Publisher: Sergei Winitzki
ISBN: 140929496X
Category : Science
Languages : en
Pages : 286
Book Description
This is a pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the array-based formalism of vector and matrix calculations. This book makes extensive use of the exterior (anti-commutative, "wedge") product of vectors. The coordinate-free formalism and the exterior product, while somewhat more abstract, provide a deeper understanding of the classical results in linear algebra. Without cumbersome matrix calculations, this text derives the standard properties of determinants, the Pythagorean formula for multidimensional volumes, the formulas of Jacobi and Liouville, the Cayley-Hamilton theorem, the Jordan canonical form, the properties of Pfaffians, as well as some generalizations of these results.
Linear Algebra
Author: Robert J. Valenza
Publisher: Springer
ISBN: 0387940995
Category : Mathematics
Languages : en
Pages : 237
Book Description
Based on lectures given at Claremont McKenna College, this text constitutes a substantial, abstract introduction to linear algebra. The presentation emphasizes the structural elements over the computational - for example by connecting matrices to linear transformations from the outset - and prepares the student for further study of abstract mathematics. Uniquely among algebra texts at this level, it introduces group theory early in the discussion, as an example of the rigorous development of informal axiomatic systems.
Publisher: Springer
ISBN: 0387940995
Category : Mathematics
Languages : en
Pages : 237
Book Description
Based on lectures given at Claremont McKenna College, this text constitutes a substantial, abstract introduction to linear algebra. The presentation emphasizes the structural elements over the computational - for example by connecting matrices to linear transformations from the outset - and prepares the student for further study of abstract mathematics. Uniquely among algebra texts at this level, it introduces group theory early in the discussion, as an example of the rigorous development of informal axiomatic systems.
Ray's Algebra, Part First
Author: Joseph Ray
Publisher:
ISBN:
Category : Algebra
Languages : en
Pages : 258
Book Description
Publisher:
ISBN:
Category : Algebra
Languages : en
Pages : 258
Book Description
Ray's Arithmetic, Second Book
Author: Joseph Ray
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 174
Book Description
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 174
Book Description