Author: Harald Niederreiter
Publisher: Cambridge University Press
ISBN: 9780521665438
Category : Computers
Languages : en
Pages : 260
Book Description
Ever since the seminal work of Goppa on algebraic-geometry codes, rational points on algebraic curves over finite fields have been an important research topic for algebraic geometers and coding theorists. The focus in this application of algebraic geometry to coding theory is on algebraic curves over finite fields with many rational points (relative to the genus). Recently, the authors discovered another important application of such curves, namely to the construction of low-discrepancy sequences. These sequences are needed for numerical methods in areas as diverse as computational physics and mathematical finance. This has given additional impetus to the theory of, and the search for, algebraic curves over finite fields with many rational points. This book aims to sum up the theoretical work on algebraic curves over finite fields with many rational points and to discuss the applications of such curves to algebraic coding theory and the construction of low-discrepancy sequences.
Rational Points on Curves Over Finite Fields
Author: Harald Niederreiter
Publisher: Cambridge University Press
ISBN: 9780521665438
Category : Computers
Languages : en
Pages : 260
Book Description
Ever since the seminal work of Goppa on algebraic-geometry codes, rational points on algebraic curves over finite fields have been an important research topic for algebraic geometers and coding theorists. The focus in this application of algebraic geometry to coding theory is on algebraic curves over finite fields with many rational points (relative to the genus). Recently, the authors discovered another important application of such curves, namely to the construction of low-discrepancy sequences. These sequences are needed for numerical methods in areas as diverse as computational physics and mathematical finance. This has given additional impetus to the theory of, and the search for, algebraic curves over finite fields with many rational points. This book aims to sum up the theoretical work on algebraic curves over finite fields with many rational points and to discuss the applications of such curves to algebraic coding theory and the construction of low-discrepancy sequences.
Publisher: Cambridge University Press
ISBN: 9780521665438
Category : Computers
Languages : en
Pages : 260
Book Description
Ever since the seminal work of Goppa on algebraic-geometry codes, rational points on algebraic curves over finite fields have been an important research topic for algebraic geometers and coding theorists. The focus in this application of algebraic geometry to coding theory is on algebraic curves over finite fields with many rational points (relative to the genus). Recently, the authors discovered another important application of such curves, namely to the construction of low-discrepancy sequences. These sequences are needed for numerical methods in areas as diverse as computational physics and mathematical finance. This has given additional impetus to the theory of, and the search for, algebraic curves over finite fields with many rational points. This book aims to sum up the theoretical work on algebraic curves over finite fields with many rational points and to discuss the applications of such curves to algebraic coding theory and the construction of low-discrepancy sequences.
Rational Points on Elliptic Curves
Author: Joseph H. Silverman
Publisher: Springer Science & Business Media
ISBN: 1475742525
Category : Mathematics
Languages : en
Pages : 292
Book Description
The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
Publisher: Springer Science & Business Media
ISBN: 1475742525
Category : Mathematics
Languages : en
Pages : 292
Book Description
The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
Algebraic Curves over a Finite Field
Author: J. W. P. Hirschfeld
Publisher: Princeton University Press
ISBN: 1400847419
Category : Mathematics
Languages : en
Pages : 717
Book Description
This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.
Publisher: Princeton University Press
ISBN: 1400847419
Category : Mathematics
Languages : en
Pages : 717
Book Description
This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.
Rational Points on Curves Over Finite Fields
Author: Jean-Pierre Serre
Publisher:
ISBN: 9782856299234
Category :
Languages : en
Pages : 187
Book Description
In 1985 Jean-Pierre Serre gave a series of lectures at Harvard University on the number of points of curves over finite fields. Based on notes taken at that time by F. Q. Gouvea, the present revised and completed documents provides an insightful introduction to this beautiful topic and to most of the ideas that have been developed in this area during the last 30 years.
Publisher:
ISBN: 9782856299234
Category :
Languages : en
Pages : 187
Book Description
In 1985 Jean-Pierre Serre gave a series of lectures at Harvard University on the number of points of curves over finite fields. Based on notes taken at that time by F. Q. Gouvea, the present revised and completed documents provides an insightful introduction to this beautiful topic and to most of the ideas that have been developed in this area during the last 30 years.
Algebraic Curves Over Finite Fields
Author: Carlos Moreno
Publisher: Cambridge University Press
ISBN: 9780521459013
Category : Mathematics
Languages : en
Pages : 264
Book Description
Develops the theory of algebraic curves over finite fields, their zeta and L-functions and the theory of algebraic geometric Goppa codes.
Publisher: Cambridge University Press
ISBN: 9780521459013
Category : Mathematics
Languages : en
Pages : 264
Book Description
Develops the theory of algebraic curves over finite fields, their zeta and L-functions and the theory of algebraic geometric Goppa codes.
Rational Points on Curves Over Finite Fields
Author: Søren Have Hansen
Publisher:
ISBN:
Category : Curves, Algebraic
Languages : en
Pages : 92
Book Description
Publisher:
ISBN:
Category : Curves, Algebraic
Languages : en
Pages : 92
Book Description
Algebraic Geometry And Its Applications: Dedicated To Gilles Lachaud On His 60th Birthday - Proceedings Of The First Saga Conference
Author: Robert Rolland
Publisher: World Scientific
ISBN: 9814471666
Category : Mathematics
Languages : en
Pages : 530
Book Description
This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre's questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry.
Publisher: World Scientific
ISBN: 9814471666
Category : Mathematics
Languages : en
Pages : 530
Book Description
This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre's questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry.
Rational Points and Arithmetic of Fundamental Groups
Author: Jakob Stix
Publisher: Springer
ISBN: 3642306748
Category : Mathematics
Languages : en
Pages : 257
Book Description
The section conjecture in anabelian geometry, announced by Grothendieck in 1983, is concerned with a description of the set of rational points of a hyperbolic algebraic curve over a number field in terms of the arithmetic of its fundamental group. While the conjecture is still open today in 2012, its study has revealed interesting arithmetic for curves and opened connections, for example, to the question whether the Brauer-Manin obstruction is the only one against rational points on curves. This monograph begins by laying the foundations for the space of sections of the fundamental group extension of an algebraic variety. Then, arithmetic assumptions on the base field are imposed and the local-to-global approach is studied in detail. The monograph concludes by discussing analogues of the section conjecture created by varying the base field or the type of variety, or by using a characteristic quotient or its birational analogue in lieu of the fundamental group extension.
Publisher: Springer
ISBN: 3642306748
Category : Mathematics
Languages : en
Pages : 257
Book Description
The section conjecture in anabelian geometry, announced by Grothendieck in 1983, is concerned with a description of the set of rational points of a hyperbolic algebraic curve over a number field in terms of the arithmetic of its fundamental group. While the conjecture is still open today in 2012, its study has revealed interesting arithmetic for curves and opened connections, for example, to the question whether the Brauer-Manin obstruction is the only one against rational points on curves. This monograph begins by laying the foundations for the space of sections of the fundamental group extension of an algebraic variety. Then, arithmetic assumptions on the base field are imposed and the local-to-global approach is studied in detail. The monograph concludes by discussing analogues of the section conjecture created by varying the base field or the type of variety, or by using a characteristic quotient or its birational analogue in lieu of the fundamental group extension.
Rational Points on Modular Elliptic Curves
Author: Henri Darmon
Publisher: American Mathematical Soc.
ISBN: 9780821889459
Category : Mathematics
Languages : en
Pages : 148
Book Description
The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.
Publisher: American Mathematical Soc.
ISBN: 9780821889459
Category : Mathematics
Languages : en
Pages : 148
Book Description
The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.
Rational Points on Varieties
Author: Bjorn Poonen
Publisher: American Mathematical Society
ISBN: 1470474581
Category : Mathematics
Languages : en
Pages : 357
Book Description
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere. The origins of arithmetic (or Diophantine) geometry can be traced back to antiquity, and it remains a lively and wide research domain up to our days. The book by Bjorn Poonen, a leading expert in the field, opens doors to this vast field for many readers with different experiences and backgrounds. It leads through various algebraic geometric constructions towards its central subject: obstructions to existence of rational points. —Yuri Manin, Max-Planck-Institute, Bonn It is clear that my mathematical life would have been very different if a book like this had been around at the time I was a student. —Hendrik Lenstra, University Leiden Understanding rational points on arbitrary algebraic varieties is the ultimate challenge. We have conjectures but few results. Poonen's book, with its mixture of basic constructions and openings into current research, will attract new generations to the Queen of Mathematics. —Jean-Louis Colliot-Thélène, Université Paris-Sud A beautiful subject, handled by a master. —Joseph Silverman, Brown University
Publisher: American Mathematical Society
ISBN: 1470474581
Category : Mathematics
Languages : en
Pages : 357
Book Description
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere. The origins of arithmetic (or Diophantine) geometry can be traced back to antiquity, and it remains a lively and wide research domain up to our days. The book by Bjorn Poonen, a leading expert in the field, opens doors to this vast field for many readers with different experiences and backgrounds. It leads through various algebraic geometric constructions towards its central subject: obstructions to existence of rational points. —Yuri Manin, Max-Planck-Institute, Bonn It is clear that my mathematical life would have been very different if a book like this had been around at the time I was a student. —Hendrik Lenstra, University Leiden Understanding rational points on arbitrary algebraic varieties is the ultimate challenge. We have conjectures but few results. Poonen's book, with its mixture of basic constructions and openings into current research, will attract new generations to the Queen of Mathematics. —Jean-Louis Colliot-Thélène, Université Paris-Sud A beautiful subject, handled by a master. —Joseph Silverman, Brown University