Author:
Publisher: John Wiley & Sons
ISBN: 1789450136
Category : Science
Languages : en
Pages : 386
Book Description
This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of the batteries and the recent research, showing a possible alternative to classical electrolytes – with the development of ionic liquid-based electrolytes – is also explored. Cycling performance in NIB is also strongly associated with the quality of the electrode-electrolyte interface, where electrolyte degradation takes place; thus, Na-ion Batteries details the recent achievements in furthering knowledge of this interface. Finally, as the ultimate goal is commercialization of this new electrical storage technology, the last chapters are dedicated to the industrial point of view, given by two startup companies, who developed two different NIB chemistries for complementary applications and markets.
Na-ion Batteries
Sodium-Ion Batteries
Author: Man Xie
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110749068
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
The book covers basic theory, progress and applications of sodium-ion batteries. It intoduces the reader to anode, cathode, electrolyte battery materials and properties. It also describes compatibility and stability of the whole battery system. It is a valuable resource for anyone interested in energy storage.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110749068
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
The book covers basic theory, progress and applications of sodium-ion batteries. It intoduces the reader to anode, cathode, electrolyte battery materials and properties. It also describes compatibility and stability of the whole battery system. It is a valuable resource for anyone interested in energy storage.
Functional Materials For Next-generation Rechargeable Batteries
Author: Jiangfeng Ni
Publisher: World Scientific
ISBN: 9811230684
Category : Science
Languages : en
Pages : 229
Book Description
Over-consumption of fossil fuels has caused deficiency of limited resources and environmental pollution. Hence, deployment and utilization of renewable energy become an urgent need. The development of next-generation rechargeable batteries that store more energy and last longer has been significantly driven by the utilization of renewable energy.This book starts with principles and fundamentals of lithium rechargeable batteries, followed by their designs and assembly. The book then focuses on the recent progress in the development of advanced functional materials, as both cathode and anode, for next-generation rechargeable batteries such as lithium-sulfur, sodium-ion, and zinc-ion batteries. One of the special features of this book is that both inorganic electrode materials and organic materials are included to meet the requirement of high energy density and high safety of future rechargeable batteries. In addition to traditional non-aqueous rechargeable batteries, detailed information and discussion on aqueous batteries and solid-state batteries are also provided.
Publisher: World Scientific
ISBN: 9811230684
Category : Science
Languages : en
Pages : 229
Book Description
Over-consumption of fossil fuels has caused deficiency of limited resources and environmental pollution. Hence, deployment and utilization of renewable energy become an urgent need. The development of next-generation rechargeable batteries that store more energy and last longer has been significantly driven by the utilization of renewable energy.This book starts with principles and fundamentals of lithium rechargeable batteries, followed by their designs and assembly. The book then focuses on the recent progress in the development of advanced functional materials, as both cathode and anode, for next-generation rechargeable batteries such as lithium-sulfur, sodium-ion, and zinc-ion batteries. One of the special features of this book is that both inorganic electrode materials and organic materials are included to meet the requirement of high energy density and high safety of future rechargeable batteries. In addition to traditional non-aqueous rechargeable batteries, detailed information and discussion on aqueous batteries and solid-state batteries are also provided.
Rational Design of Multi-Functional Nanomaterials
Author: Carlos Lodeiro
Publisher: Frontiers Media SA
ISBN: 288945987X
Category :
Languages : en
Pages : 121
Book Description
One of the most important issues, when a nanomaterial is designed, is to control the synthetic pathways to ensure the final desired product. A combination of dry and wet procedures, as well as chemical and physical methodologies, it is possible to successfully prepare new multifunctional nanomaterials, often as a result of multidisciplinary cooperation between chemists, physics, biologist, physicians, material engineers, etc. Drug delivery, environmental detection of contaminants, and many industrial applications directly rely on properties such as water solubility, permeability, cell penetration, shape control, and size of the monodispersed nanoparticle, among others. Functionalized nanomaterials play a crucial role in modern research areas because of their unique physical and chemical properties, explored in many different fields including medicine and biology, new materials, pharmacology as drug delivery systems, and in environmental analysis for sensing new contaminants, among other technical and industrial applications. For future technological applications, the rational design of these multifunctional nanomaterials is critical, and often depends on the excellent control of the organic and inorganic chemical reactions involved during production. The success of their applications relies directly on the photophysical properties created in the final material, including the emission of light or colorimetric responses, water solubility, selectivity, sensitivity, stability, etc. For example, from an analytical point of view, the detection and quantification of emerging analytes is directly dependent on the selectivity and sensitivity showed by the material in a complex media.
Publisher: Frontiers Media SA
ISBN: 288945987X
Category :
Languages : en
Pages : 121
Book Description
One of the most important issues, when a nanomaterial is designed, is to control the synthetic pathways to ensure the final desired product. A combination of dry and wet procedures, as well as chemical and physical methodologies, it is possible to successfully prepare new multifunctional nanomaterials, often as a result of multidisciplinary cooperation between chemists, physics, biologist, physicians, material engineers, etc. Drug delivery, environmental detection of contaminants, and many industrial applications directly rely on properties such as water solubility, permeability, cell penetration, shape control, and size of the monodispersed nanoparticle, among others. Functionalized nanomaterials play a crucial role in modern research areas because of their unique physical and chemical properties, explored in many different fields including medicine and biology, new materials, pharmacology as drug delivery systems, and in environmental analysis for sensing new contaminants, among other technical and industrial applications. For future technological applications, the rational design of these multifunctional nanomaterials is critical, and often depends on the excellent control of the organic and inorganic chemical reactions involved during production. The success of their applications relies directly on the photophysical properties created in the final material, including the emission of light or colorimetric responses, water solubility, selectivity, sensitivity, stability, etc. For example, from an analytical point of view, the detection and quantification of emerging analytes is directly dependent on the selectivity and sensitivity showed by the material in a complex media.
Potassium-ion Batteries
Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1119661390
Category : Technology & Engineering
Languages : en
Pages : 432
Book Description
Battery technology is constantly changing, and the concepts and applications of these changes are rapidly becoming increasingly more important as more and more industries and individuals continue to make “greener” choices in their energy sources. As global dependence on fossil fuels slowly wanes, there is a heavier and heavier importance placed on cleaner power sources and methods for storing and transporting that power. Battery technology is a huge part of this global energy revolution. Potassium-ion batteries were first introduced to the world for energy storage in 2004, over two decades after the invention of lithium-ion batteries. Potassium-ion (or “K-ion”) batteries have many advantages, including low cost, long cycle life, high energy density, safety, and reliability. Potassium-ion batteries are the potential alternative to lithium-ion batteries, fueling a new direction of energy storage research in many applications and across industries. Potassium-ion Batteries: Materials and Applications explores the concepts, mechanisms, and applications of the next-generation energy technology of potassium-ion batteries. Also included is an in-depth overview of energy storage materials and electrolytes. This is the first book on this technology and serves as a reference guide for electrochemists, chemical engineers, students, research scholars, faculty, and R&D professionals who are working in electrochemistry, solid-state science, material science, ionics, power sources, and renewable energy storage fields.
Publisher: John Wiley & Sons
ISBN: 1119661390
Category : Technology & Engineering
Languages : en
Pages : 432
Book Description
Battery technology is constantly changing, and the concepts and applications of these changes are rapidly becoming increasingly more important as more and more industries and individuals continue to make “greener” choices in their energy sources. As global dependence on fossil fuels slowly wanes, there is a heavier and heavier importance placed on cleaner power sources and methods for storing and transporting that power. Battery technology is a huge part of this global energy revolution. Potassium-ion batteries were first introduced to the world for energy storage in 2004, over two decades after the invention of lithium-ion batteries. Potassium-ion (or “K-ion”) batteries have many advantages, including low cost, long cycle life, high energy density, safety, and reliability. Potassium-ion batteries are the potential alternative to lithium-ion batteries, fueling a new direction of energy storage research in many applications and across industries. Potassium-ion Batteries: Materials and Applications explores the concepts, mechanisms, and applications of the next-generation energy technology of potassium-ion batteries. Also included is an in-depth overview of energy storage materials and electrolytes. This is the first book on this technology and serves as a reference guide for electrochemists, chemical engineers, students, research scholars, faculty, and R&D professionals who are working in electrochemistry, solid-state science, material science, ionics, power sources, and renewable energy storage fields.
Constructing three-dimensional architectures to design advanced anodes materials for sodium-ion batteries: from nanoscale to microscale
Author: Yu-Feng Sun
Publisher: OAE Publishing Inc.
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 33
Book Description
Sodium-ion batteries (SIBs) are emerging as a possible substitute for lithium-ion batteries (LIBs) in low-cost and large-scale electrochemical energy storage systems owing to the lack of lithium resources. The properties of SIBs are correlated to the electrode materials, while the performance of electrode materials is significantly affected by the morphologies. In recent years, several kinds of anode materials involving carbon-based anodes, titanium-based anodes, conversion anodes, alloy-based anodes, and organic anodes have been systematically researched to develop high-performance SIBs. Nanostructures have huge specific surface areas and short ion diffusion pathways. However, the excessive solid electrolyte interface film and worse thermodynamic stability hinder the application of nanomaterials in SIBs. Thus, the strategies for constructing three-dimensional (3D) architectures have been developed to compensate for the flaws of nanomaterials. This review summarizes recent achievements in 3D architectures, including hollow structures, core-shell structures, yolk-shell structures, porous structures, and self-assembled nano/micro-structures, and discusses the relationship between the 3D architectures and sodium storage properties. Notably, the intention of constructing 3D architectures is to improve materials performance by integrating the benefits of various structures and components. The development of 3D architecture construction strategies will be essential to future SIB applications.
Publisher: OAE Publishing Inc.
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 33
Book Description
Sodium-ion batteries (SIBs) are emerging as a possible substitute for lithium-ion batteries (LIBs) in low-cost and large-scale electrochemical energy storage systems owing to the lack of lithium resources. The properties of SIBs are correlated to the electrode materials, while the performance of electrode materials is significantly affected by the morphologies. In recent years, several kinds of anode materials involving carbon-based anodes, titanium-based anodes, conversion anodes, alloy-based anodes, and organic anodes have been systematically researched to develop high-performance SIBs. Nanostructures have huge specific surface areas and short ion diffusion pathways. However, the excessive solid electrolyte interface film and worse thermodynamic stability hinder the application of nanomaterials in SIBs. Thus, the strategies for constructing three-dimensional (3D) architectures have been developed to compensate for the flaws of nanomaterials. This review summarizes recent achievements in 3D architectures, including hollow structures, core-shell structures, yolk-shell structures, porous structures, and self-assembled nano/micro-structures, and discusses the relationship between the 3D architectures and sodium storage properties. Notably, the intention of constructing 3D architectures is to improve materials performance by integrating the benefits of various structures and components. The development of 3D architecture construction strategies will be essential to future SIB applications.
Advanced Nanomaterials for Electrochemical Energy Conversion and Storage
Author:
Publisher: Elsevier
ISBN: 0128145587
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
Advanced Nanomaterials for Electrochemical Energy Conversion and Storage covers recent progress made in the rational design and engineering of functional nanomaterials for battery and supercapacitor applications in the forms of electrode materials, separators and electrolytes. The book includes detailed discussions of preparation methods, structural characterization, and manipulation techniques. Users will find a comprehensive illustration on the close correlation between material structures and properties, such as energy density, power density, cycle number and safety.
Publisher: Elsevier
ISBN: 0128145587
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
Advanced Nanomaterials for Electrochemical Energy Conversion and Storage covers recent progress made in the rational design and engineering of functional nanomaterials for battery and supercapacitor applications in the forms of electrode materials, separators and electrolytes. The book includes detailed discussions of preparation methods, structural characterization, and manipulation techniques. Users will find a comprehensive illustration on the close correlation between material structures and properties, such as energy density, power density, cycle number and safety.
Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries
Author: Snehashis Choudhury
Publisher: Springer Nature
ISBN: 3030289435
Category : Technology & Engineering
Languages : en
Pages : 239
Book Description
This thesis makes significant advances in the design of electrolytes and interfaces in electrochemical cells that utilize reactive metals as anodes. Such cells are of contemporary interest because they offer substantially higher charge storage capacity than state-of-the-art lithium-ion battery technology. Batteries based on metallic anodes are currently considered impractical and unsafe because recharge of the anode causes physical and chemical instabilities that produce dendritic deposition of the metal leading to catastrophic failure via thermal runaway. This thesis utilizes a combination of chemical synthesis, physical & electrochemical analysis, and materials theory to investigate structure, ion transport properties, and electrochemical behaviors of hybrid electrolytes and interfacial phases designed to prevent such instabilities. In particular, it demonstrates that relatively low-modulus electrolytes composed of cross-linked networks of polymer-grafted nanoparticles stabilize electrodeposition of reactive metals by multiple processes, including screening electrode electrolyte interactions at electrochemical interfaces and by regulating ion transport in tortuous nanopores. This discovery is significant because it overturns a longstanding perception in the field of nanoparticle-polymer hybrid electrolytes that only solid electrolytes with mechanical modulus higher than that of the metal electrode are able to stabilize electrodeposition of reactive metals.
Publisher: Springer Nature
ISBN: 3030289435
Category : Technology & Engineering
Languages : en
Pages : 239
Book Description
This thesis makes significant advances in the design of electrolytes and interfaces in electrochemical cells that utilize reactive metals as anodes. Such cells are of contemporary interest because they offer substantially higher charge storage capacity than state-of-the-art lithium-ion battery technology. Batteries based on metallic anodes are currently considered impractical and unsafe because recharge of the anode causes physical and chemical instabilities that produce dendritic deposition of the metal leading to catastrophic failure via thermal runaway. This thesis utilizes a combination of chemical synthesis, physical & electrochemical analysis, and materials theory to investigate structure, ion transport properties, and electrochemical behaviors of hybrid electrolytes and interfacial phases designed to prevent such instabilities. In particular, it demonstrates that relatively low-modulus electrolytes composed of cross-linked networks of polymer-grafted nanoparticles stabilize electrodeposition of reactive metals by multiple processes, including screening electrode electrolyte interactions at electrochemical interfaces and by regulating ion transport in tortuous nanopores. This discovery is significant because it overturns a longstanding perception in the field of nanoparticle-polymer hybrid electrolytes that only solid electrolytes with mechanical modulus higher than that of the metal electrode are able to stabilize electrodeposition of reactive metals.
Handbook of Sodium-Ion Batteries
Author: George Zhao
Publisher: CRC Press
ISBN: 1000625931
Category : Science
Languages : en
Pages : 765
Book Description
The need for batteries has grown exponentially in response to the increase in global energy demand and to the ambitious goals that governments have set up for sustainable energy development worldwide, especially in developed countries. While lithium-ion batteries currently dominate the energy storage market, the limited and unevenly distributed lithium resources have caused huge concerns over the sustainability of the lithium-ion battery technology. Sodium-ion batteries have significant benefits over lithium-ion batteries, including sodium’s abundance in the Earth’s crust. These batteries have therefore gained research interest, and efforts are being made to use them in place of lithium-ion batteries. While the past decade has witnessed significant research advances and breakthroughs in developing the sodium-ion battery technology, there still remain fundamental challenges that must be overcome to push the technology forward. This book comprises 13 chapters that discuss the fundamental challenges, electrode materials, electrolytes, separators, advanced instrumental analysis techniques, and computational methods for sodium-ion batteries from renowned scientists. The book is a unique combination of all aspects associated with sodium-ion batteries and can therefore be used as a handbook.
Publisher: CRC Press
ISBN: 1000625931
Category : Science
Languages : en
Pages : 765
Book Description
The need for batteries has grown exponentially in response to the increase in global energy demand and to the ambitious goals that governments have set up for sustainable energy development worldwide, especially in developed countries. While lithium-ion batteries currently dominate the energy storage market, the limited and unevenly distributed lithium resources have caused huge concerns over the sustainability of the lithium-ion battery technology. Sodium-ion batteries have significant benefits over lithium-ion batteries, including sodium’s abundance in the Earth’s crust. These batteries have therefore gained research interest, and efforts are being made to use them in place of lithium-ion batteries. While the past decade has witnessed significant research advances and breakthroughs in developing the sodium-ion battery technology, there still remain fundamental challenges that must be overcome to push the technology forward. This book comprises 13 chapters that discuss the fundamental challenges, electrode materials, electrolytes, separators, advanced instrumental analysis techniques, and computational methods for sodium-ion batteries from renowned scientists. The book is a unique combination of all aspects associated with sodium-ion batteries and can therefore be used as a handbook.
Sodium-Ion Batteries
Author: Xiaobo Ji
Publisher: John Wiley & Sons
ISBN: 3527350616
Category : Technology & Engineering
Languages : en
Pages : 373
Book Description
Practice-oriented guide systematically summarizing and condensing the development, directions, potential, and core issues of sodium-ion batteries Sodium-Ion Batteries begins with an introduction to sodium-ion batteries (SIBs), including their background, development, definition, mechanism, and classification/configuration, moving on to summarize cathode and anode materials, discuss electrolyte, separator, and other key technologies and devices, and review practical applications and conclusions/prospects of sodium-ion batteries. The text promotes the idea that SIBs can be a good complement, or even a strong competitor, to more mainstream energy technologies in specific application scenarios, including but not limited to large-scale grid energy storage, distributed energy storage, and low-speed electric vehicles, by virtue of considerable advantages in cost-effectiveness compared with lithium-ion, lead-acid, and vanadium redox flow batteries. This book delves into what we have done, where we are, and how we should proceed in regards to the advancement of SIBs, in order to make the technology more applicable in real-world situations. Specific sample topics covered in Sodium-Ion Batteries include: Electrochemical test techniques, including cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy Advanced characterization techniques and theoretical calculation, covering imaging and microscopy, and the synchrotron radiation x-ray diffraction technique Designing and manufacturing SIBs, covering types of cells (cylindrical, soft-pack, and psitmatic), and design requirements for cells Performance tests and failure analysis, covering electrochemical and safety performances test, failure phenomenon, failure analysis method, and cost estimation Solid-state nuclear magnetic resonance spectroscopy, covering principles of ssNMR and shift ranges for battery materials A complete review of an exciting energy storage technology that is undergoing a crucial development stage, Sodium-Ion Batteries is an essential resource for materials scientists, inorganic and physical chemists, and all other academics, researchers, and professionals who wish to stay on the cutting edge of energy technology.
Publisher: John Wiley & Sons
ISBN: 3527350616
Category : Technology & Engineering
Languages : en
Pages : 373
Book Description
Practice-oriented guide systematically summarizing and condensing the development, directions, potential, and core issues of sodium-ion batteries Sodium-Ion Batteries begins with an introduction to sodium-ion batteries (SIBs), including their background, development, definition, mechanism, and classification/configuration, moving on to summarize cathode and anode materials, discuss electrolyte, separator, and other key technologies and devices, and review practical applications and conclusions/prospects of sodium-ion batteries. The text promotes the idea that SIBs can be a good complement, or even a strong competitor, to more mainstream energy technologies in specific application scenarios, including but not limited to large-scale grid energy storage, distributed energy storage, and low-speed electric vehicles, by virtue of considerable advantages in cost-effectiveness compared with lithium-ion, lead-acid, and vanadium redox flow batteries. This book delves into what we have done, where we are, and how we should proceed in regards to the advancement of SIBs, in order to make the technology more applicable in real-world situations. Specific sample topics covered in Sodium-Ion Batteries include: Electrochemical test techniques, including cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy Advanced characterization techniques and theoretical calculation, covering imaging and microscopy, and the synchrotron radiation x-ray diffraction technique Designing and manufacturing SIBs, covering types of cells (cylindrical, soft-pack, and psitmatic), and design requirements for cells Performance tests and failure analysis, covering electrochemical and safety performances test, failure phenomenon, failure analysis method, and cost estimation Solid-state nuclear magnetic resonance spectroscopy, covering principles of ssNMR and shift ranges for battery materials A complete review of an exciting energy storage technology that is undergoing a crucial development stage, Sodium-Ion Batteries is an essential resource for materials scientists, inorganic and physical chemists, and all other academics, researchers, and professionals who wish to stay on the cutting edge of energy technology.