Author: Christine Preisach
Publisher: Springer Science & Business Media
ISBN: 354078246X
Category : Computers
Languages : en
Pages : 714
Book Description
Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.
Data Analysis, Machine Learning and Applications
Author: Christine Preisach
Publisher: Springer Science & Business Media
ISBN: 354078246X
Category : Computers
Languages : en
Pages : 714
Book Description
Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.
Publisher: Springer Science & Business Media
ISBN: 354078246X
Category : Computers
Languages : en
Pages : 714
Book Description
Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.
Notes on Randomized Algorithms
Author: James Aspnes
Publisher:
ISBN: 9781505381474
Category :
Languages : en
Pages : 354
Book Description
Notes on Randomized AlgorithmsBy James Aspnes
Publisher:
ISBN: 9781505381474
Category :
Languages : en
Pages : 354
Book Description
Notes on Randomized AlgorithmsBy James Aspnes
Understanding Machine Learning
Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
ISBN: 1107057132
Category : Computers
Languages : en
Pages : 415
Book Description
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Publisher: Cambridge University Press
ISBN: 1107057132
Category : Computers
Languages : en
Pages : 415
Book Description
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Algorithms and Data Structures with Python
Author: Cuantum Technologies LLC
Publisher: Packt Publishing Ltd
ISBN: 1836208545
Category : Computers
Languages : en
Pages : 488
Book Description
Master Python and elevate your algorithmic skills with this comprehensive course. From introductory concepts to advanced computational problems, learn how to efficiently solve complex challenges and optimize your code. Key Features Comprehensive introduction to Python programming and algorithms Detailed exploration of data structures and sorting/searching techniques Advanced topics including graph algorithms and computational problem-solving Book DescriptionBegin your journey with an introduction to Python and algorithms, laying the groundwork for more complex topics. You will start with the basics of Python programming, ensuring a solid foundation before diving into more advanced and sophisticated concepts. As you progress, you'll explore elementary data containers, gaining an understanding of their role in algorithm development. Midway through the course, you’ll delve into the art of sorting and searching, mastering techniques that are crucial for efficient data handling. You will then venture into hierarchical data structures, such as trees and graphs, which are essential for understanding complex data relationships. By mastering algorithmic techniques, you’ll learn how to implement solutions for a variety of computational challenges. The latter part of the course focuses on advanced topics, including network algorithms, string and pattern deciphering, and advanced computational problems. You'll apply your knowledge through practical case studies and optimizations, bridging the gap between theoretical concepts and real-world applications. This comprehensive approach ensures you are well-prepared to handle any programming challenge with confidence.What you will learn Master sorting and searching algorithms Implement hierarchical data structures like trees and graphs Apply advanced algorithmic techniques to solve complex problems Optimize code for efficiency and performance Understand and implement advanced graph algorithms Translate theoretical concepts into practical, real-world solutions Who this book is for This course is designed for a diverse group of learners, including technical professionals, software developers, computer science students, and data enthusiasts. It caters to individuals who have a basic understanding of programming and are eager to deepen their knowledge of Python and algorithms. Whether you're a recent graduate, or an experienced developer looking to expand your skill set, this course is tailored to meet the needs of all types of audiences. Ideal for those aiming to strengthen their algorithmic thinking and improve their coding efficiency.
Publisher: Packt Publishing Ltd
ISBN: 1836208545
Category : Computers
Languages : en
Pages : 488
Book Description
Master Python and elevate your algorithmic skills with this comprehensive course. From introductory concepts to advanced computational problems, learn how to efficiently solve complex challenges and optimize your code. Key Features Comprehensive introduction to Python programming and algorithms Detailed exploration of data structures and sorting/searching techniques Advanced topics including graph algorithms and computational problem-solving Book DescriptionBegin your journey with an introduction to Python and algorithms, laying the groundwork for more complex topics. You will start with the basics of Python programming, ensuring a solid foundation before diving into more advanced and sophisticated concepts. As you progress, you'll explore elementary data containers, gaining an understanding of their role in algorithm development. Midway through the course, you’ll delve into the art of sorting and searching, mastering techniques that are crucial for efficient data handling. You will then venture into hierarchical data structures, such as trees and graphs, which are essential for understanding complex data relationships. By mastering algorithmic techniques, you’ll learn how to implement solutions for a variety of computational challenges. The latter part of the course focuses on advanced topics, including network algorithms, string and pattern deciphering, and advanced computational problems. You'll apply your knowledge through practical case studies and optimizations, bridging the gap between theoretical concepts and real-world applications. This comprehensive approach ensures you are well-prepared to handle any programming challenge with confidence.What you will learn Master sorting and searching algorithms Implement hierarchical data structures like trees and graphs Apply advanced algorithmic techniques to solve complex problems Optimize code for efficiency and performance Understand and implement advanced graph algorithms Translate theoretical concepts into practical, real-world solutions Who this book is for This course is designed for a diverse group of learners, including technical professionals, software developers, computer science students, and data enthusiasts. It caters to individuals who have a basic understanding of programming and are eager to deepen their knowledge of Python and algorithms. Whether you're a recent graduate, or an experienced developer looking to expand your skill set, this course is tailored to meet the needs of all types of audiences. Ideal for those aiming to strengthen their algorithmic thinking and improve their coding efficiency.
Automated Machine Learning
Author: Frank Hutter
Publisher: Springer
ISBN: 3030053180
Category : Computers
Languages : en
Pages : 223
Book Description
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
Publisher: Springer
ISBN: 3030053180
Category : Computers
Languages : en
Pages : 223
Book Description
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
Machine Learning and Data Science Blueprints for Finance
Author: Hariom Tatsat
Publisher: "O'Reilly Media, Inc."
ISBN: 1492073008
Category : Computers
Languages : en
Pages : 426
Book Description
Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations
Publisher: "O'Reilly Media, Inc."
ISBN: 1492073008
Category : Computers
Languages : en
Pages : 426
Book Description
Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations
Machine Learning Refined
Author: Jeremy Watt
Publisher: Cambridge University Press
ISBN: 1108480721
Category : Computers
Languages : en
Pages : 597
Book Description
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.
Publisher: Cambridge University Press
ISBN: 1108480721
Category : Computers
Languages : en
Pages : 597
Book Description
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.
Randomized Algorithms in Automatic Control and Data Mining
Author: Oleg Granichin
Publisher: Springer
ISBN: 3642547869
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
In the fields of data mining and control, the huge amount of unstructured data and the presence of uncertainty in system descriptions have always been critical issues. The book Randomized Algorithms in Automatic Control and Data Mining introduces the readers to the fundamentals of randomized algorithm applications in data mining (especially clustering) and in automatic control synthesis. The methods proposed in this book guarantee that the computational complexity of classical algorithms and the conservativeness of standard robust control techniques will be reduced. It is shown that when a problem requires "brute force" in selecting among options, algorithms based on random selection of alternatives offer good results with certain probability for a restricted time and significantly reduce the volume of operations.
Publisher: Springer
ISBN: 3642547869
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
In the fields of data mining and control, the huge amount of unstructured data and the presence of uncertainty in system descriptions have always been critical issues. The book Randomized Algorithms in Automatic Control and Data Mining introduces the readers to the fundamentals of randomized algorithm applications in data mining (especially clustering) and in automatic control synthesis. The methods proposed in this book guarantee that the computational complexity of classical algorithms and the conservativeness of standard robust control techniques will be reduced. It is shown that when a problem requires "brute force" in selecting among options, algorithms based on random selection of alternatives offer good results with certain probability for a restricted time and significantly reduce the volume of operations.
Numerical Algorithms
Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400
Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Scalable Algorithms for Data and Network Analysis
Author: Shang-Hua Teng
Publisher:
ISBN: 9781680831306
Category : Computers
Languages : en
Pages : 292
Book Description
In the age of Big Data, efficient algorithms are in high demand. It is also essential that efficient algorithms should be scalable. This book surveys a family of algorithmic techniques for the design of scalable algorithms. These techniques include local network exploration, advanced sampling, sparsification, and geometric partitioning.
Publisher:
ISBN: 9781680831306
Category : Computers
Languages : en
Pages : 292
Book Description
In the age of Big Data, efficient algorithms are in high demand. It is also essential that efficient algorithms should be scalable. This book surveys a family of algorithmic techniques for the design of scalable algorithms. These techniques include local network exploration, advanced sampling, sparsification, and geometric partitioning.