Random Differential Equations in Science and Engineering

Random Differential Equations in Science and Engineering PDF Author: Soong
Publisher: Academic Press
ISBN: 0080956122
Category : Computers
Languages : en
Pages : 343

Get Book Here

Book Description
Random Differential Equations in Science and Engineering

Random Differential Equations in Science and Engineering

Random Differential Equations in Science and Engineering PDF Author: Soong
Publisher: Academic Press
ISBN: 0080956122
Category : Computers
Languages : en
Pages : 343

Get Book Here

Book Description
Random Differential Equations in Science and Engineering

Random Differential Equations in Scientific Computing

Random Differential Equations in Scientific Computing PDF Author: Tobias Neckel
Publisher: Walter de Gruyter
ISBN: 8376560263
Category : Mathematics
Languages : en
Pages : 650

Get Book Here

Book Description
This book is a holistic and self-contained treatment of the analysis and numerics of random differential equations from a problem-centred point of view. An interdisciplinary approach is applied by considering state-of-the-art concepts of both dynamical systems and scientific computing. The red line pervading this book is the two-fold reduction of a random partial differential equation disturbed by some external force as present in many important applications in science and engineering. First, the random partial differential equation is reduced to a set of random ordinary differential equations in the spirit of the method of lines. These are then further reduced to a family of (deterministic) ordinary differential equations. The monograph will be of benefit, not only to mathematicians, but can also be used for interdisciplinary courses in informatics and engineering.

Random Perturbation Methods with Applications in Science and Engineering

Random Perturbation Methods with Applications in Science and Engineering PDF Author: Anatoli V. Skorokhod
Publisher: Springer Science & Business Media
ISBN: 0387224467
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
This book develops methods for describing random dynamical systems, and it illustrats how the methods can be used in a variety of applications. Appeals to researchers and graduate students who require tools to investigate stochastic systems.

Differential Equations in Engineering

Differential Equations in Engineering PDF Author: Nupur Goyal
Publisher: CRC Press
ISBN: 1000433153
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
Differential Equations in Engineering: Research and Applications describes advanced research in the field of the applications of differential equations in engineering and the sciences, and offers a sound theoretical background, along with case studies. It describes the advances in differential equations in real life for engineers. Along with covering many advanced differential equations and explaining the utility of these equations, the book provides a broad understanding of the use of differential equations to solve and analyze many real-world problems, such as calculating the movement or flow of electricity, the motion of an object to and from, like a pendulum, or explaining thermodynamics concepts by making use of various mathematical tools, techniques, strategies, and methods in applied engineering. This book is written for researchers and academicians, as well as for undergraduate and postgraduate students of engineering.

Non-Local Partial Differential Equations for Engineering and Biology

Non-Local Partial Differential Equations for Engineering and Biology PDF Author: Nikos I. Kavallaris
Publisher: Springer
ISBN: 3319679449
Category : Technology & Engineering
Languages : en
Pages : 310

Get Book Here

Book Description
This book presents new developments in non-local mathematical modeling and mathematical analysis on the behavior of solutions with novel technical tools. Theoretical backgrounds in mechanics, thermo-dynamics, game theory, and theoretical biology are examined in details. It starts off with a review and summary of the basic ideas of mathematical modeling frequently used in the sciences and engineering. The authors then employ a number of models in bio-science and material science to demonstrate applications, and provide recent advanced studies, both on deterministic non-local partial differential equations and on some of their stochastic counterparts used in engineering. Mathematical models applied in engineering, chemistry, and biology are subject to conservation laws. For instance, decrease or increase in thermodynamic quantities and non-local partial differential equations, associated with the conserved physical quantities as parameters. These present novel mathematical objects are engaged with rich mathematical structures, in accordance with the interactions between species or individuals, self-organization, pattern formation, hysteresis. These models are based on various laws of physics, such as mechanics of continuum, electro-magnetic theory, and thermodynamics. This is why many areas of mathematics, calculus of variation, dynamical systems, integrable systems, blow-up analysis, and energy methods are indispensable in understanding and analyzing these phenomena. This book aims for researchers and upper grade students in mathematics, engineering, physics, economics, and biology.

Differential Equations for Engineers

Differential Equations for Engineers PDF Author: Wei-Chau Xie
Publisher: Cambridge University Press
ISBN: 1139488163
Category : Technology & Engineering
Languages : en
Pages : 567

Get Book Here

Book Description
Xie presents a systematic introduction to ordinary differential equations for engineering students and practitioners. Mathematical concepts and various techniques are presented in a clear, logical, and concise manner. Various visual features are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. Readers are motivated by a focus on the relevance of differential equations through their applications in various engineering disciplines. Studies of various types of differential equations are determined by engineering applications. Theory and techniques for solving differential equations are then applied to solve practical engineering problems. A step-by-step analysis is presented to model the engineering problems using differential equations from physical principles and to solve the differential equations using the easiest possible method. This book is suitable for undergraduate students in engineering.

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations PDF Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327

Get Book Here

Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Stochastic Stability of Differential Equations

Stochastic Stability of Differential Equations PDF Author: Rafail Khasminskii
Publisher: Springer Science & Business Media
ISBN: 3642232809
Category : Mathematics
Languages : en
Pages : 353

Get Book Here

Book Description
Since the publication of the first edition of the present volume in 1980, the stochastic stability of differential equations has become a very popular subject of research in mathematics and engineering. To date exact formulas for the Lyapunov exponent, the criteria for the moment and almost sure stability, and for the existence of stationary and periodic solutions of stochastic differential equations have been widely used in the literature. In this updated volume readers will find important new results on the moment Lyapunov exponent, stability index and some other fields, obtained after publication of the first edition, and a significantly expanded bibliography. This volume provides a solid foundation for students in graduate courses in mathematics and its applications. It is also useful for those researchers who would like to learn more about this subject, to start their research in this area or to study the properties of concrete mechanical systems subjected to random perturbations.

Stochastic Calculus

Stochastic Calculus PDF Author: Mircea Grigoriu
Publisher: Springer Science & Business Media
ISBN: 0817682287
Category : Mathematics
Languages : en
Pages : 784

Get Book Here

Book Description
Algebraic, differential, and integral equations are used in the applied sciences, en gineering, economics, and the social sciences to characterize the current state of a physical, economic, or social system and forecast its evolution in time. Generally, the coefficients of and/or the input to these equations are not precisely known be cause of insufficient information, limited understanding of some underlying phe nomena, and inherent randonmess. For example, the orientation of the atomic lattice in the grains of a polycrystal varies randomly from grain to grain, the spa tial distribution of a phase of a composite material is not known precisely for a particular specimen, bone properties needed to develop reliable artificial joints vary significantly with individual and age, forces acting on a plane from takeoff to landing depend in a complex manner on the environmental conditions and flight pattern, and stock prices and their evolution in time depend on a large number of factors that cannot be described by deterministic models. Problems that can be defined by algebraic, differential, and integral equations with random coefficients and/or input are referred to as stochastic problems. The main objective of this book is the solution of stochastic problems, that is, the determination of the probability law, moments, and/or other probabilistic properties of the state of a physical, economic, or social system. It is assumed that the operators and inputs defining a stochastic problem are specified.

Random Ordinary Differential Equations and Their Numerical Solution

Random Ordinary Differential Equations and Their Numerical Solution PDF Author: Xiaoying Han
Publisher: Springer
ISBN: 981106265X
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs). RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems. They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor expansions in the usual sense. However, Taylor-like expansions can be derived for RODEs using an iterated application of the appropriate chain rule in integral form, and represent the starting point for the systematic derivation of consistent higher order numerical schemes for RODEs. The book is directed at a wide range of readers in applied and computational mathematics and related areas as well as readers who are interested in the applications of mathematical models involving random effects, in particular in the biological sciences.The level of this book is suitable for graduate students in applied mathematics and related areas, computational sciences and systems biology. A basic knowledge of ordinary differential equations and numerical analysis is required.