Radiative Transfer Modeling in the Coupled Atmosphere-ocean System and Its Application to the Remote Sensing of Ocean Color Imagery /Bamghua Yan

Radiative Transfer Modeling in the Coupled Atmosphere-ocean System and Its Application to the Remote Sensing of Ocean Color Imagery /Bamghua Yan PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 170

Get Book Here

Book Description


Radiative Transfer Modeling in the Coupled Atmosphere-ocean System and Its Application to the Remote Sensing of Ocean Color Imagery

Radiative Transfer Modeling in the Coupled Atmosphere-ocean System and Its Application to the Remote Sensing of Ocean Color Imagery PDF Author: Banghua Yan
Publisher:
ISBN:
Category : Marine productivity
Languages : en
Pages : 340

Get Book Here

Book Description
"Ocean color is the radiance emanating from the ocean due to scattering by chlorophyll pigments and particles of organic and inorganic origin. Thus, it contains information about chlorophyll concentrations which can be used to estimate primary productivity. Observations of ocean color from space can be used to monitor the variability in marine primary productivity, thereby permitting a quantum leap in our understanding of oceanographic processes from regional to global scales. Satellite remote sensing of ocean color requires accurate removal of the contribution by atmospheric molecules and aerosols to the radiance measured at the top of the atmosphere (TOA). This removal process is called 'atmospheric correction.' Since about 90% of the radiance received by the satellitee sensor comes from the atmosphere, accurate removal of this portion is very important. A prerequisite for accurate atmospheric correction is accurate and reliable simulation of the transport of radiation in the atmosphere-ocean system. This thesis focuses on this radiative transfer process, and investigates the impact of particles in the atmosphere (aerosols) and ocean (oceanic chlorophylls and air bubbles) on our ability to remove the atmospheric contribution from the received signal. To explore these issues, a comprehensive radiative transfer model for the coupled atmosphere-ocean system is used to simulate the radiative transfer process and provide a physically sound link between surface-based measurements of oceanic and atmospheric parameters and radiances observed by satellite-deployed ocean color sensors. This model has been upgraded to provide accurate radiances in arbitrary directions as required to analyze satellite data. The model is then applied to quantify the uncertainties associated with several commonly made assumptions invoked in atmospheric correction algorithms. Since Atmospheric aerosols consist of a mixture of absorbing and non-absorbing components that may or may not be soluble, it becomes a challenging task to model the radiative effects of these particles. It is shown that the contribution of these particles to the TOA radiance depends on the assumptions made concerning how these particles mix and grow in a humid environment. This makes atmospheric correction a very difficult undertaking. Air bubbles in the ocean created by breaking waves give rise to scattered light. Unless this contribution to the radiance leaving the ocean is correctly accounted for, it would be mistakenly attributed to chlorophyll pigments. Thus, the findings in this thesis make an important contribution to the development of an adequate radiative transfer model for the coupled atmosphere-ocean system required for development and assessment of algorithms for atmospheric correction of ocean color imagery"--Leaves iii-iv.

Radiative Transfer in the Atmosphere and Ocean

Radiative Transfer in the Atmosphere and Ocean PDF Author: Knut Stamnes
Publisher: Cambridge University Press
ISBN: 1108210422
Category : Science
Languages : en
Pages : 531

Get Book Here

Book Description
This new and completely updated edition gives a detailed description of radiative transfer processes at a level accessible to advanced students. The volume gives the reader a basic understanding of global warming and enhanced levels of harmful ultraviolet radiation caused by ozone depletion. It teaches the basic physics of absorption, scattering and emission processes in turbid media, such as the atmosphere and ocean, using simple semi-classical models. The radiative transfer equation, including multiple scattering, is formulated and solved for several prototype problems, using both simple approximate and accurate numerical methods. In addition, the reader has access to a powerful, state-of-the-art computational code for simulating radiative transfer processes in coupled atmosphere-water systems including snow and ice. This computational code can be regarded as a powerful educational aid, but also as a research tool that can be applied to solve a variety of research problems in environmental sciences.

Radiative Transfer in the Coupled Atmosphere-sea Ice-ocean System with Application in Remote Sensing

Radiative Transfer in the Coupled Atmosphere-sea Ice-ocean System with Application in Remote Sensing PDF Author: Shigan Jiang
Publisher:
ISBN:
Category : Fresh water
Languages : en
Pages : 252

Get Book Here

Book Description


Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery

Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery PDF Author: H. R. Gordon
Publisher: Springer Science & Business Media
ISBN: 1468462806
Category : Science
Languages : en
Pages : 123

Get Book Here

Book Description
Since the pioneering work of Clarke et a1. (1970) it has been known that chlorophyll a (or. more generally. pigments) contained in phytoplankton in near-surface waters produced systematic variations in the color of the ocean which could be observed from aircraft. As a direct result of this work. NASA developed the Coastal Zone Color Scanner (CZCS). which was launched on Nimbus-G (now Nimbus-7) in October 1978. (A short description of the CZCS is provided in Appendix I. ) Shortly before launch. at the IUCRM Colloquium on Passive Radiometry of the Ocean (June 1978). a working group on water color measurements was formed to assess water color remote sensing at that time. A report (Morel and Gordon. 1980) was prepared which summarized the state-of-the-art of the algorithms for atmospheric correction. and phytoplankton pigment and seston retrieval. and which included recommendations concerning the design of next generation sensors. The water color session of the COSPAR/SCOR/IUCRM Symposium 'Oceanography from Space' held in Venice (May 1980. i. e •• in the post-launch period) provided the opportunity for a reassessment of the state-of-the-art after having gained some experience in the analysis of the initial CZCS imagery. Such an assessment is the purpose of this review paper. which will begin with an outline of the basic physics of water color remote sensing and the fundamentals of atmospheric corrections. The present state of the constituent retrieval and atmospheric correction algorithms will then be critically assessed.

Assessing the Requirements for Sustained Ocean Color Research and Operations

Assessing the Requirements for Sustained Ocean Color Research and Operations PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309210445
Category : Science
Languages : en
Pages : 114

Get Book Here

Book Description
The ocean is a fundamental component of the earth's biosphere. It covers roughly 70 percent of Earth's surface and plays a pivotal role in the cycling of life's building blocks, such as nitrogen, carbon, oxygen, and sulfur. The ocean also contributes to regulating the climate system. Most of the primary producers in the ocean comprise of microscopic plants and some bacteria; and these photosynthetic organisms (phytoplankton) form the base of the ocean's food web. Monitoring the health of the ocean and its productivity is critical to understanding and managing the ocean's essential functions and living resources. Because the ocean is so vast and difficult for humans to explore, satellite remote sensing of ocean color is currently the only way to observe and monitor the biological state of the surface ocean globally on time scales of days to decades. Ocean color measurements reveal a wealth of ecologically important characteristics including: chlorophyll concentration, the rate of phytoplankton photosynthesis, sediment transport, dispersion of pollutants, and responses of oceanic biota to long-term climate changes. Continuity of satellite ocean color data and associated climate research products are presently at significant risk for the U.S. ocean color community. Assessing Requirements for Sustained Ocean Color Research and Operations aims to identify the ocean color data needs for a broad range of end users, develop a consensus for the minimum requirements, and outline options to meet these needs on a sustained basis. The report assesses lessons learned in global ocean color remote sensing from the SeaWiFS/MODIS era to guide planning for acquisition of future global ocean color radiance data to support U.S. research and operational needs.

Radiative Transfer Modelling for Sun Glint Correction in Marine Satellite Imagery

Radiative Transfer Modelling for Sun Glint Correction in Marine Satellite Imagery PDF Author: Susan Barbara Kay
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Remote sensing is a powerful tool for studying the marine environment; however, many images are contaminated by sun glint, the specular reflection of light from the water surface. Improved radiative transfer modelling could lead to better methods for estimating and correcting sunglint. This thesis explores the effect of using detailed numerical models of the sea surface when investigating the transfer of light through the atmosphere-ocean system. New numerical realisations that model both the shape and slope of the sea surface have been created; these contrast with existing radiative transfer models, where the air-water interface has slope but not elevation. Surface realisations including features on a scale from 3 mm to 200 m were created by a Fourier synthesis method, using up to date spectra of the wind-blown sea surface. The surfaces had mean square slopes and elevation variances in line with those of observed seas, for wind speeds up to 15 m/s. Ray-tracing using the new surfaces gave estimates of reflected radiance that were similar to those made using slope statistics methods, but significantly different in 41% of cases tested. The mean difference in the reflected radiance at these points was 19%, median 7%. Elevation-based surfaces give increased sideways scattering and reduced forward scattering of light incident on the sea surface. The elevation-based models have been applied to estimate pixel-pixel variation in ocean colour imagery and to simulate scenes viewed by three types of sensor. The simulations correctly estimated the size and position of the glint zone. Simulations of two ocean colour images gave a lower peak reflectance than the original values, but higher reflectance at the edge of the glint zone. The use of the simulation to test glint correction methods has been demonstrated, as have global Monte Carlo techniques for investigating sensitivity and uncertainty in sun glint correction. This work has shown that elevation-based sea surface models can be created and tested using readily-available computer hardware. The new model can be used to simulate glint in a variety of situations, giving a tool for testing glint correction methods. It could also be used for glint correction directly, by predicting the level of sun glint in a given set of conditions.

The Verification of a Radiative Transfer Model for a Multiple Layer Ocean and Its Application to Remotely Sensed Imagery

The Verification of a Radiative Transfer Model for a Multiple Layer Ocean and Its Application to Remotely Sensed Imagery PDF Author: Steven G. Ackleson
Publisher:
ISBN:
Category : Remote sensing
Languages : en
Pages : 282

Get Book Here

Book Description


Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space

Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving radiances in the visible over clear deep ocean areas and cannot easily be modified for retrievals over turbid coastal waters. We have developed an atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses lookup tables generated with a vector radiative transfer code. Aerosol parameters are determined by a spectrum-matching technique that uses channels located at wavelengths longer than 0.86 mm. The aerosol information is extracted back to the visible based on aerosol models during the retrieval of water-leaving radiances. Quite reasonable water-leaving radiances have been obtained when our algorithm was applied to process hyperspectral imaging data acquired with an airborne imaging spectrometer.

Terrestrial Radiative Transfer

Terrestrial Radiative Transfer PDF Author: Harriet H Natsuyama
Publisher:
ISBN: 9784431685289
Category :
Languages : en
Pages : 304

Get Book Here

Book Description