Author: Wei Li
Publisher: Springer Nature
ISBN: 9819758300
Category :
Languages : en
Pages : 234
Book Description
R-Calculus, VI: Finite Injury Priority Method
Author: Wei Li
Publisher: Springer Nature
ISBN: 9819758300
Category :
Languages : en
Pages : 234
Book Description
Publisher: Springer Nature
ISBN: 9819758300
Category :
Languages : en
Pages : 234
Book Description
R-Calculus, VI: Finite Injury Priority Method
Author: Wei Li
Publisher: Springer
ISBN: 9789819758296
Category : Mathematics
Languages : en
Pages : 0
Book Description
This sixth volume of the book series applies finite injury priority method to R-calculi and obtain (in)completeness theorem for binary-valued, Post three-valued, B2^2-valued and L4-valued first-order logics, and extend the method to infinite injury priority method and 0"-method for default logic to produce pseudo-extensions of a default theory, corresponding to different R-calculi. Finite injury priority method and tree constructions are discussed in this book. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic.
Publisher: Springer
ISBN: 9789819758296
Category : Mathematics
Languages : en
Pages : 0
Book Description
This sixth volume of the book series applies finite injury priority method to R-calculi and obtain (in)completeness theorem for binary-valued, Post three-valued, B2^2-valued and L4-valued first-order logics, and extend the method to infinite injury priority method and 0"-method for default logic to produce pseudo-extensions of a default theory, corresponding to different R-calculi. Finite injury priority method and tree constructions are discussed in this book. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic.
R-CALCULUS: A Logic of Belief Revision
Author: Wei Li
Publisher: Springer Nature
ISBN: 9811629447
Category : Computers
Languages : en
Pages : 210
Book Description
This book introduces new models based on R-calculus and theories of belief revision for dealing with large and changing data. It extends R-calculus from first-order logic to propositional logic, description logics, modal logic and logic programming, and from minimal change semantics to subset minimal change, pseudo-subformula minimal change and deduction-based minimal change (the last two minimal changes are newly defined). And it proves soundness and completeness theorems with respect to the minimal changes in these logics. To make R-calculus computable, an approximate R-calculus is given which uses finite injury priority method in recursion theory. Moreover, two applications of R-calculus are given to default theory and semantic inheritance networks. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic. Also it is very useful for all those who are interested in data, digitization and correctness and consistency of information, in modal logics, non monotonic logics, decidable/undecidable logics, logic programming, description logics, default logics and semantic inheritance networks.
Publisher: Springer Nature
ISBN: 9811629447
Category : Computers
Languages : en
Pages : 210
Book Description
This book introduces new models based on R-calculus and theories of belief revision for dealing with large and changing data. It extends R-calculus from first-order logic to propositional logic, description logics, modal logic and logic programming, and from minimal change semantics to subset minimal change, pseudo-subformula minimal change and deduction-based minimal change (the last two minimal changes are newly defined). And it proves soundness and completeness theorems with respect to the minimal changes in these logics. To make R-calculus computable, an approximate R-calculus is given which uses finite injury priority method in recursion theory. Moreover, two applications of R-calculus are given to default theory and semantic inheritance networks. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic. Also it is very useful for all those who are interested in data, digitization and correctness and consistency of information, in modal logics, non monotonic logics, decidable/undecidable logics, logic programming, description logics, default logics and semantic inheritance networks.
R-Calculus, III: Post Three-Valued Logic
Author: Wei Li
Publisher: Springer Nature
ISBN: 9811942706
Category : Mathematics
Languages : en
Pages : 284
Book Description
This third volume of the book series shows R-calculus is a Gentzen-typed deduction system which is non-monotonic, and is a concrete belief revision operator which is proved to satisfy the AGM postulates and the DP postulates. In this book, R-calculus is taken as Tableau-based/sequent-based/multisequent-based to preserve the satisfiability of the Theory/sequent/multisequent to revise, or sequent-based, to preserve the satisfiability of the sequent to revise. The R-calculi for Post and three-valued logic is given. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic.
Publisher: Springer Nature
ISBN: 9811942706
Category : Mathematics
Languages : en
Pages : 284
Book Description
This third volume of the book series shows R-calculus is a Gentzen-typed deduction system which is non-monotonic, and is a concrete belief revision operator which is proved to satisfy the AGM postulates and the DP postulates. In this book, R-calculus is taken as Tableau-based/sequent-based/multisequent-based to preserve the satisfiability of the Theory/sequent/multisequent to revise, or sequent-based, to preserve the satisfiability of the sequent to revise. The R-calculi for Post and three-valued logic is given. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic.
R-Calculus, II: Many-Valued Logics
Author: Wei Li
Publisher: Springer Nature
ISBN: 9811692947
Category : Mathematics
Languages : en
Pages : 281
Book Description
This second volume of the book series shows R-calculus is a combination of one monotonic tableau proof system and one non-monotonic one. The R-calculus is a Gentzen-type deduction system which is non-monotonic, and is a concrete belief revision operator which is proved to satisfy the AGM postulates and the DP postulates. It discusses the algebraical and logical properties of tableau proof systems and R-calculi in many-valued logics. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic. Also it is very useful for all those who are interested in data, digitization and correctness and consistency of information, in modal logics, non monotonic logics, decidable/undecidable logics, logic programming, description logics, default logics and semantic inheritance networks.
Publisher: Springer Nature
ISBN: 9811692947
Category : Mathematics
Languages : en
Pages : 281
Book Description
This second volume of the book series shows R-calculus is a combination of one monotonic tableau proof system and one non-monotonic one. The R-calculus is a Gentzen-type deduction system which is non-monotonic, and is a concrete belief revision operator which is proved to satisfy the AGM postulates and the DP postulates. It discusses the algebraical and logical properties of tableau proof systems and R-calculi in many-valued logics. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic. Also it is very useful for all those who are interested in data, digitization and correctness and consistency of information, in modal logics, non monotonic logics, decidable/undecidable logics, logic programming, description logics, default logics and semantic inheritance networks.
Computable Structure Theory
Author: Antonio Montalbán
Publisher: Cambridge University Press
ISBN: 1108534422
Category : Mathematics
Languages : en
Pages : 214
Book Description
In mathematics, we know there are some concepts - objects, constructions, structures, proofs - that are more complex and difficult to describe than others. Computable structure theory quantifies and studies the complexity of mathematical structures, structures such as graphs, groups, and orderings. Written by a contemporary expert in the subject, this is the first full monograph on computable structure theory in 20 years. Aimed at graduate students and researchers in mathematical logic, it brings new results of the author together with many older results that were previously scattered across the literature and presents them all in a coherent framework, making it easier for the reader to learn the main results and techniques in the area for application in their own research. This volume focuses on countable structures whose complexity can be measured within arithmetic; a forthcoming second volume will study structures beyond arithmetic.
Publisher: Cambridge University Press
ISBN: 1108534422
Category : Mathematics
Languages : en
Pages : 214
Book Description
In mathematics, we know there are some concepts - objects, constructions, structures, proofs - that are more complex and difficult to describe than others. Computable structure theory quantifies and studies the complexity of mathematical structures, structures such as graphs, groups, and orderings. Written by a contemporary expert in the subject, this is the first full monograph on computable structure theory in 20 years. Aimed at graduate students and researchers in mathematical logic, it brings new results of the author together with many older results that were previously scattered across the literature and presents them all in a coherent framework, making it easier for the reader to learn the main results and techniques in the area for application in their own research. This volume focuses on countable structures whose complexity can be measured within arithmetic; a forthcoming second volume will study structures beyond arithmetic.
Handbook of Mathematical Logic
Author: J. Barwise
Publisher: Elsevier
ISBN: 0080933645
Category : Computers
Languages : en
Pages : 1179
Book Description
The handbook is divided into four parts: model theory, set theory, recursion theory and proof theory. Each of the four parts begins with a short guide to the chapters that follow. Each chapter is written for non-specialists in the field in question. Mathematicians will find that this book provides them with a unique opportunity to apprise themselves of developments in areas other than their own.
Publisher: Elsevier
ISBN: 0080933645
Category : Computers
Languages : en
Pages : 1179
Book Description
The handbook is divided into four parts: model theory, set theory, recursion theory and proof theory. Each of the four parts begins with a short guide to the chapters that follow. Each chapter is written for non-specialists in the field in question. Mathematicians will find that this book provides them with a unique opportunity to apprise themselves of developments in areas other than their own.
Notices of the American Mathematical Society
Author: American Mathematical Society
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 1414
Book Description
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 1414
Book Description
Turing Computability
Author: Robert I. Soare
Publisher: Springer
ISBN: 3642319335
Category : Computers
Languages : en
Pages : 289
Book Description
Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.
Publisher: Springer
ISBN: 3642319335
Category : Computers
Languages : en
Pages : 289
Book Description
Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.
Referativnyĭ zhurnal
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 576
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 576
Book Description