Author: Arnold F. Nikiforov
Publisher: Springer Science & Business Media
ISBN: 3764373466
Category : Science
Languages : en
Pages : 439
Book Description
This book studies the widely used theoretical models for calculating properties of hot dense matter. Calculations are illustrated by plots and tables, and they are compared with experimental results. The purpose is to help understanding of atomic physics in hot plasma and to aid in developing efficient and robust computer codes for calculating opacity and equations of state for arbitrary material in a wide range of temperatures and densities.
Quantum-statistical Models of Hot Dense Matter
Author: A. F. Nikiforov
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Quantum-Statistical Models of Hot Dense Matter
Author: Arnold F. Nikiforov
Publisher: Springer Science & Business Media
ISBN: 3764373466
Category : Science
Languages : en
Pages : 439
Book Description
This book studies the widely used theoretical models for calculating properties of hot dense matter. Calculations are illustrated by plots and tables, and they are compared with experimental results. The purpose is to help understanding of atomic physics in hot plasma and to aid in developing efficient and robust computer codes for calculating opacity and equations of state for arbitrary material in a wide range of temperatures and densities.
Publisher: Springer Science & Business Media
ISBN: 3764373466
Category : Science
Languages : en
Pages : 439
Book Description
This book studies the widely used theoretical models for calculating properties of hot dense matter. Calculations are illustrated by plots and tables, and they are compared with experimental results. The purpose is to help understanding of atomic physics in hot plasma and to aid in developing efficient and robust computer codes for calculating opacity and equations of state for arbitrary material in a wide range of temperatures and densities.
Energy Research Abstracts
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 782
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 782
Book Description
Recent Progress in Orbital-free Density Functional Theory
Author: Tomasz A. Wesolowski
Publisher: World Scientific
ISBN: 9814436739
Category : Mathematics
Languages : en
Pages : 464
Book Description
This is a comprehensive overview of state-of-the-art computational methods based on orbital-free formulation of density functional theory completed by the most recent developments concerning the exact properties, approximations, and interpretations of the relevant quantities in density functional theory.The book is a compilation of contributions stemming from a series of workshops which had been taking place since 2002. It not only chronicles many of the latest developments but also summarises some of the more significant ones. The chapters are mainly reviews of sub-domains but also include original research.
Publisher: World Scientific
ISBN: 9814436739
Category : Mathematics
Languages : en
Pages : 464
Book Description
This is a comprehensive overview of state-of-the-art computational methods based on orbital-free formulation of density functional theory completed by the most recent developments concerning the exact properties, approximations, and interpretations of the relevant quantities in density functional theory.The book is a compilation of contributions stemming from a series of workshops which had been taking place since 2002. It not only chronicles many of the latest developments but also summarises some of the more significant ones. The chapters are mainly reviews of sub-domains but also include original research.
Frontiers and Challenges in Warm Dense Matter
Author: Frank Graziani
Publisher: Springer Science & Business
ISBN: 3319049127
Category : Computers
Languages : en
Pages : 294
Book Description
Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.
Publisher: Springer Science & Business
ISBN: 3319049127
Category : Computers
Languages : en
Pages : 294
Book Description
Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.
Hot Hadronic Matter
Author: Jean Letessier
Publisher: Springer Science & Business Media
ISBN: 1461519454
Category : Science
Languages : en
Pages : 569
Book Description
The past decade has seen the development of the operational understanding of fun damental interactions within the standard model. This has detoured our attention from the great enigmas posed by the dynamics and collective behavior of strongly interacting particles. Discovered more than 30 years ago, the thermal nature of the hadronic particle spectra has stimulated considerable theoretical effort, which so far has failed to 'confirm' on the basis of microscopic interactions the origins of this phenomenon. However, a highly successful Statistical Bootstrap Model was developed by Rolf Hagedorn at CERN about 30 years ago, which has led us to consider the 'boiling hadronic matter' as a transient state in the trans formation of hadronic particles into their melted form which we call Quark-GIuon-Plasma (QGP). Today, we return to seek detailed understanding of the thermalization processes of hadronic matter, equipped on the theoretical side with the knowledge of the fundamental strong interaction theory, the quantum chromo-dynamics (QCD), and recognizing the im portant role of the complex QCD-vacuum structure. On the other side, we have developed new experimental tools in the form of nuclear relativistic beams, which allow to create rather extended regions in space-time of Hot Hadronic Matter. The confluence of these new and recent developments in theory and experiment led us to gather together from June 27 to July 1, 1994, at the Grand Hotel in Divonne-Ies-Bains, France, to discuss and expose the open questions and issues in our field.
Publisher: Springer Science & Business Media
ISBN: 1461519454
Category : Science
Languages : en
Pages : 569
Book Description
The past decade has seen the development of the operational understanding of fun damental interactions within the standard model. This has detoured our attention from the great enigmas posed by the dynamics and collective behavior of strongly interacting particles. Discovered more than 30 years ago, the thermal nature of the hadronic particle spectra has stimulated considerable theoretical effort, which so far has failed to 'confirm' on the basis of microscopic interactions the origins of this phenomenon. However, a highly successful Statistical Bootstrap Model was developed by Rolf Hagedorn at CERN about 30 years ago, which has led us to consider the 'boiling hadronic matter' as a transient state in the trans formation of hadronic particles into their melted form which we call Quark-GIuon-Plasma (QGP). Today, we return to seek detailed understanding of the thermalization processes of hadronic matter, equipped on the theoretical side with the knowledge of the fundamental strong interaction theory, the quantum chromo-dynamics (QCD), and recognizing the im portant role of the complex QCD-vacuum structure. On the other side, we have developed new experimental tools in the form of nuclear relativistic beams, which allow to create rather extended regions in space-time of Hot Hadronic Matter. The confluence of these new and recent developments in theory and experiment led us to gather together from June 27 to July 1, 1994, at the Grand Hotel in Divonne-Ies-Bains, France, to discuss and expose the open questions and issues in our field.
Dense Z-Pinches
Author: Jeremy Chittenden
Publisher: AIP Conference Proceedings / P
ISBN:
Category : Science
Languages : en
Pages : 400
Book Description
This proceedings volume summarizes the state-of-the-art in Z-pinch research pertaining to applications in inertial confinement fusion, x-ray radiation sources and high energy density plasma physics. Topics include: wire array Z-pinches, single wires and fibers, X-pinches, gas-puffs, plasma focus, capillary discharges and soft X-ray lasers, pulsed power drivers, diagnostic techniques and spectroscopy, as well as theoretical concepts.
Publisher: AIP Conference Proceedings / P
ISBN:
Category : Science
Languages : en
Pages : 400
Book Description
This proceedings volume summarizes the state-of-the-art in Z-pinch research pertaining to applications in inertial confinement fusion, x-ray radiation sources and high energy density plasma physics. Topics include: wire array Z-pinches, single wires and fibers, X-pinches, gas-puffs, plasma focus, capillary discharges and soft X-ray lasers, pulsed power drivers, diagnostic techniques and spectroscopy, as well as theoretical concepts.
Quantum Plasmas
Author: Fernando Haas
Publisher: Springer Science & Business Media
ISBN: 1441982019
Category : Science
Languages : en
Pages : 215
Book Description
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
Publisher: Springer Science & Business Media
ISBN: 1441982019
Category : Science
Languages : en
Pages : 215
Book Description
This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of knowledge: plasma and quantum theory. In these chapters, the quantum hydrodynamic model for plasmas, which has continuously evolved over the past decade, will be summarized to include both the development and applications of the method.
Plasma Scattering of Electromagnetic Radiation
Author: John Sheffield
Publisher: Academic Press
ISBN: 0080952038
Category : Science
Languages : en
Pages : 512
Book Description
This work presents one of the most powerful methods of plasma diagnosis in exquisite detail, to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers, the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of their principles with worked examples to assist researchers in applying the theory. - Computing techniques for solving basic equations helps researchers compare data to the actual experiment - New material on advances on the experimental side, such as the application of high density plasmas of inertial fusion - Worked out examples of the scattering technique for easier comprehension of theory
Publisher: Academic Press
ISBN: 0080952038
Category : Science
Languages : en
Pages : 512
Book Description
This work presents one of the most powerful methods of plasma diagnosis in exquisite detail, to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers, the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of their principles with worked examples to assist researchers in applying the theory. - Computing techniques for solving basic equations helps researchers compare data to the actual experiment - New material on advances on the experimental side, such as the application of high density plasmas of inertial fusion - Worked out examples of the scattering technique for easier comprehension of theory
Physics, Uspekhi
Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 250
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 250
Book Description