Author: Luigi Accardi
Publisher: Springer
ISBN: 354038846X
Category : Mathematics
Languages : en
Pages : 379
Book Description
These proceedings of the first Quantum Probability meeting held in Oberwolfach is the fourth in a series begun with the 1982 meeting of Mondragone and continued in Heidelberg ('84) and in Leuven ('85). The main topics discussed were: quantum stochastic calculus, mathematical models of quantum noise and their applications to quantum optics, the quantum Feynman-Kac formula, quantum probability and models of quantum statistical mechanics, the notion of conditioning in quantum probability and related problems (dilations, quantum Markov processes), quantum central limit theorems. With the exception of Kümmerer's review article on Quantum Markov Processes, all contributions are original research papers.
Quantum Probability and Applications III
Author: Luigi Accardi
Publisher: Springer
ISBN: 354038846X
Category : Mathematics
Languages : en
Pages : 379
Book Description
These proceedings of the first Quantum Probability meeting held in Oberwolfach is the fourth in a series begun with the 1982 meeting of Mondragone and continued in Heidelberg ('84) and in Leuven ('85). The main topics discussed were: quantum stochastic calculus, mathematical models of quantum noise and their applications to quantum optics, the quantum Feynman-Kac formula, quantum probability and models of quantum statistical mechanics, the notion of conditioning in quantum probability and related problems (dilations, quantum Markov processes), quantum central limit theorems. With the exception of Kümmerer's review article on Quantum Markov Processes, all contributions are original research papers.
Publisher: Springer
ISBN: 354038846X
Category : Mathematics
Languages : en
Pages : 379
Book Description
These proceedings of the first Quantum Probability meeting held in Oberwolfach is the fourth in a series begun with the 1982 meeting of Mondragone and continued in Heidelberg ('84) and in Leuven ('85). The main topics discussed were: quantum stochastic calculus, mathematical models of quantum noise and their applications to quantum optics, the quantum Feynman-Kac formula, quantum probability and models of quantum statistical mechanics, the notion of conditioning in quantum probability and related problems (dilations, quantum Markov processes), quantum central limit theorems. With the exception of Kümmerer's review article on Quantum Markov Processes, all contributions are original research papers.
Quantum Probability and Spectral Analysis of Graphs
Author: Akihito Hora
Publisher: Springer Science & Business Media
ISBN: 3540488634
Category : Science
Languages : en
Pages : 384
Book Description
This is the first book to comprehensively cover quantum probabilistic approaches to spectral analysis of graphs, an approach developed by the authors. The book functions as a concise introduction to quantum probability from an algebraic aspect. Here readers will learn several powerful methods and techniques of wide applicability, recently developed under the name of quantum probability. The exercises at the end of each chapter help to deepen understanding.
Publisher: Springer Science & Business Media
ISBN: 3540488634
Category : Science
Languages : en
Pages : 384
Book Description
This is the first book to comprehensively cover quantum probabilistic approaches to spectral analysis of graphs, an approach developed by the authors. The book functions as a concise introduction to quantum probability from an algebraic aspect. Here readers will learn several powerful methods and techniques of wide applicability, recently developed under the name of quantum probability. The exercises at the end of each chapter help to deepen understanding.
Quantum Probability and Applications II
Author: Luigi Accardi
Publisher: Springer
ISBN: 3540395709
Category : Science
Languages : en
Pages : 541
Book Description
Publisher: Springer
ISBN: 3540395709
Category : Science
Languages : en
Pages : 541
Book Description
Quantum Probability and Applications IV
Author: Luigi Accardi
Publisher: Springer
ISBN: 3540467130
Category : Mathematics
Languages : en
Pages : 367
Book Description
This volume, the fourth of the quantum probability series, collects part of the contributions to the Year of Quantum Probability organized by the Volterra Center of University of Rome II. The intensive communication among researchers during this Year allowed several open problems to be solved and several inexpected connections to be revealed.
Publisher: Springer
ISBN: 3540467130
Category : Mathematics
Languages : en
Pages : 367
Book Description
This volume, the fourth of the quantum probability series, collects part of the contributions to the Year of Quantum Probability organized by the Volterra Center of University of Rome II. The intensive communication among researchers during this Year allowed several open problems to be solved and several inexpected connections to be revealed.
Quantum Probability and Applications V
Author: Luigi Accardi
Publisher: Springer
ISBN: 3540463119
Category : Science
Languages : en
Pages : 425
Book Description
These proceedings of the workshop on quantum probability held in Heidelberg, September 26-30, 1988 contains a representative selection of research articles on quantum stochastic processes, quantum stochastic calculus, quantum noise, geometry, quantum probability, quantum central limit theorems and quantum statistical mechanics.
Publisher: Springer
ISBN: 3540463119
Category : Science
Languages : en
Pages : 425
Book Description
These proceedings of the workshop on quantum probability held in Heidelberg, September 26-30, 1988 contains a representative selection of research articles on quantum stochastic processes, quantum stochastic calculus, quantum noise, geometry, quantum probability, quantum central limit theorems and quantum statistical mechanics.
Probability in Physics
Author: Yemima Ben-Menahem
Publisher: Springer Science & Business Media
ISBN: 3642213286
Category : Science
Languages : en
Pages : 325
Book Description
What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.
Publisher: Springer Science & Business Media
ISBN: 3642213286
Category : Science
Languages : en
Pages : 325
Book Description
What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.
Open Quantum Systems III
Author: Stéphane Attal
Publisher: Springer
ISBN: 3540339671
Category : Mathematics
Languages : en
Pages : 326
Book Description
This volume is the third and last of a series devoted to the lecture notes of the Grenoble Summer School on “Open Quantum Systems” which took place at the th th Institut Fourier from June 16 to July 4 2003. The contributions presented in this volumecorrespondtoexpanded versionsofthelecturenotesprovidedbytheauthors to the students of the Summer School. The corresponding lectures were scheduled in the last part of the School devoted to recent developments in the study of Open Quantum Systems. Whereas the rst two volumes were dedicated to a detailed exposition of the mathematical techniques and physical concepts relevant in the study of Open S- tems with noapriori pre-requisites, the contributions presented in this volume request from the reader some familiarity with these aspects. Indeed, the material presented here aims at leading the reader already acquainted with the basics in ? quantum statistical mechanics, spectral theory of linear operators,C -dynamical systems, and quantum stochastic differential equations to the front of the current research done on various aspects of Open Quantum Systems. Nevertheless, pe- gogical efforts have been made by the various authors of these notes so that this volume should be essentially self-contained for a reader with minimal previous - posure to the themes listed above. In any case, the reader in need of complements can always turn to these rst two volumes. The topics covered in these lectures notes start with an introduction to n- equilibrium quantum statistical mechanics.
Publisher: Springer
ISBN: 3540339671
Category : Mathematics
Languages : en
Pages : 326
Book Description
This volume is the third and last of a series devoted to the lecture notes of the Grenoble Summer School on “Open Quantum Systems” which took place at the th th Institut Fourier from June 16 to July 4 2003. The contributions presented in this volumecorrespondtoexpanded versionsofthelecturenotesprovidedbytheauthors to the students of the Summer School. The corresponding lectures were scheduled in the last part of the School devoted to recent developments in the study of Open Quantum Systems. Whereas the rst two volumes were dedicated to a detailed exposition of the mathematical techniques and physical concepts relevant in the study of Open S- tems with noapriori pre-requisites, the contributions presented in this volume request from the reader some familiarity with these aspects. Indeed, the material presented here aims at leading the reader already acquainted with the basics in ? quantum statistical mechanics, spectral theory of linear operators,C -dynamical systems, and quantum stochastic differential equations to the front of the current research done on various aspects of Open Quantum Systems. Nevertheless, pe- gogical efforts have been made by the various authors of these notes so that this volume should be essentially self-contained for a reader with minimal previous - posure to the themes listed above. In any case, the reader in need of complements can always turn to these rst two volumes. The topics covered in these lectures notes start with an introduction to n- equilibrium quantum statistical mechanics.
Quantum Probability and Randomness
Author: Andrei Khrennikov
Publisher: MDPI
ISBN: 3038977144
Category : Science
Languages : en
Pages : 276
Book Description
The last few years have been characterized by a tremendous development of quantum information and probability and their applications, including quantum computing, quantum cryptography, and quantum random generators. In spite of the successful development of quantum technology, its foundational basis is still not concrete and contains a few sandy and shaky slices. Quantum random generators are one of the most promising outputs of the recent quantum information revolution. Therefore, it is very important to reconsider the foundational basis of this project, starting with the notion of irreducible quantum randomness. Quantum probabilities present a powerful tool to model uncertainty. Interpretations of quantum probability and foundational meaning of its basic tools, starting with the Born rule, are among the topics which will be covered by this issue. Recently, quantum probability has started to play an important role in a few areas of research outside quantum physics—in particular, quantum probabilistic treatment of problems of theory of decision making under uncertainty. Such studies are also among the topics of this issue.
Publisher: MDPI
ISBN: 3038977144
Category : Science
Languages : en
Pages : 276
Book Description
The last few years have been characterized by a tremendous development of quantum information and probability and their applications, including quantum computing, quantum cryptography, and quantum random generators. In spite of the successful development of quantum technology, its foundational basis is still not concrete and contains a few sandy and shaky slices. Quantum random generators are one of the most promising outputs of the recent quantum information revolution. Therefore, it is very important to reconsider the foundational basis of this project, starting with the notion of irreducible quantum randomness. Quantum probabilities present a powerful tool to model uncertainty. Interpretations of quantum probability and foundational meaning of its basic tools, starting with the Born rule, are among the topics which will be covered by this issue. Recently, quantum probability has started to play an important role in a few areas of research outside quantum physics—in particular, quantum probabilistic treatment of problems of theory of decision making under uncertainty. Such studies are also among the topics of this issue.
Quantum Probability And Related Topics: Volume Viii
Author: Luigi Accardi
Publisher: World Scientific
ISBN: 981450520X
Category : Mathematics
Languages : en
Pages : 380
Book Description
Quantum Probability and Related Topics is a series of volumes based on material discussed at the various QP conferences. It aims to provide an update on the rapidly growing field of classical probability, quantum physics and functional analysis.
Publisher: World Scientific
ISBN: 981450520X
Category : Mathematics
Languages : en
Pages : 380
Book Description
Quantum Probability and Related Topics is a series of volumes based on material discussed at the various QP conferences. It aims to provide an update on the rapidly growing field of classical probability, quantum physics and functional analysis.
Quantum Probability & Related Topics
Author: Luigi Accardi
Publisher: World Scientific
ISBN: 9789810207168
Category : Mathematics
Languages : en
Pages : 544
Book Description
This volume contains several surveys of important developments in quantum probability. The new type of quantum central limit theorems, based on the notion of free independence rather than the usual Boson or Fermion independence is discussed. A surprising result is that the role of the Gaussian for this new type of independence is played by the Wigner distribution. This motivated the introduction of new type of quantum independent increments noise, the free noise and the corresponding stochastic calculus. A further generalization, the ?-noises, is discussed. The free stochastic calculus is shown to be able to fit naturally into the general representation free calculus. The basic free are shown to be realized as non-adapted stochastic integrals with respect to the usual Boson white noises. Quantum noise on the finite difference algebra is expressed in terms of the usual Boson white noises. A new quantum way of looking at classical stochastic flows, in particular diffusions on Riemannian Manifolds is explained. Quantum groups are discussed from the point of view of possible applications to quantum probability. The applications of quantum probability to physics are surveyed.
Publisher: World Scientific
ISBN: 9789810207168
Category : Mathematics
Languages : en
Pages : 544
Book Description
This volume contains several surveys of important developments in quantum probability. The new type of quantum central limit theorems, based on the notion of free independence rather than the usual Boson or Fermion independence is discussed. A surprising result is that the role of the Gaussian for this new type of independence is played by the Wigner distribution. This motivated the introduction of new type of quantum independent increments noise, the free noise and the corresponding stochastic calculus. A further generalization, the ?-noises, is discussed. The free stochastic calculus is shown to be able to fit naturally into the general representation free calculus. The basic free are shown to be realized as non-adapted stochastic integrals with respect to the usual Boson white noises. Quantum noise on the finite difference algebra is expressed in terms of the usual Boson white noises. A new quantum way of looking at classical stochastic flows, in particular diffusions on Riemannian Manifolds is explained. Quantum groups are discussed from the point of view of possible applications to quantum probability. The applications of quantum probability to physics are surveyed.