Quantum Linear Groups and Representations of $GL_n({\mathbb F}_q)$

Quantum Linear Groups and Representations of $GL_n({\mathbb F}_q)$ PDF Author: Jonathan Brundan
Publisher: American Mathematical Soc.
ISBN: 0821826166
Category : Mathematics
Languages : en
Pages : 127

Get Book Here

Book Description
We give a self-contained account of the results originating in the work of James and the second author in the 1980s relating the representation theory of GL[n(F[q) over fields of characteristic coprime to q to the representation theory of "quantum GL[n" at roots of unity. The new treatment allows us to extend the theory in several directions. First, we prove a precise functorial connection between the operations of tensor product in quantum GL[n and Harish-Chandra induction in finite GL[n. This allows us to obtain a version of the recent Morita theorem of Cline, Parshall and Scott valid in addition for p-singular classes. From that we obtain simplified treatments of various basic known facts, such as the computation of decomposition numbers and blocks of GL[n(F[q) from knowledge of the same for the quantum group, and the non-defining analogue of Steinberg's tensor product theorem. We also easily obtain a new double centralizer property between GL[n(F[[q) and quantum GL[n, generalizing a result of Takeuchi. Finally, we apply the theory to study the affine general linear group, following ideas of Zelevinsky in characteristic zero. We prove results that can be regarded as the modular analogues of Zelevinsky's and Thoma's branching rules. Using these, we obtain a new dimension formula for the irreducible cross-characteristic representations of GL[n(F[q), expressing their dimensions in terms of the characters of irreducible modules over the quantum group.

Quantum Linear Groups and Representations of $GL_n({\mathbb F}_q)$

Quantum Linear Groups and Representations of $GL_n({\mathbb F}_q)$ PDF Author: Jonathan Brundan
Publisher: American Mathematical Soc.
ISBN: 0821826166
Category : Mathematics
Languages : en
Pages : 127

Get Book Here

Book Description
We give a self-contained account of the results originating in the work of James and the second author in the 1980s relating the representation theory of GL[n(F[q) over fields of characteristic coprime to q to the representation theory of "quantum GL[n" at roots of unity. The new treatment allows us to extend the theory in several directions. First, we prove a precise functorial connection between the operations of tensor product in quantum GL[n and Harish-Chandra induction in finite GL[n. This allows us to obtain a version of the recent Morita theorem of Cline, Parshall and Scott valid in addition for p-singular classes. From that we obtain simplified treatments of various basic known facts, such as the computation of decomposition numbers and blocks of GL[n(F[q) from knowledge of the same for the quantum group, and the non-defining analogue of Steinberg's tensor product theorem. We also easily obtain a new double centralizer property between GL[n(F[[q) and quantum GL[n, generalizing a result of Takeuchi. Finally, we apply the theory to study the affine general linear group, following ideas of Zelevinsky in characteristic zero. We prove results that can be regarded as the modular analogues of Zelevinsky's and Thoma's branching rules. Using these, we obtain a new dimension formula for the irreducible cross-characteristic representations of GL[n(F[q), expressing their dimensions in terms of the characters of irreducible modules over the quantum group.

Algebraic Geometry

Algebraic Geometry PDF Author: Ulrich Görtz
Publisher: Springer Science & Business Media
ISBN: 3834897221
Category : Mathematics
Languages : en
Pages : 622

Get Book Here

Book Description
This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.

Quantum Linear Groups

Quantum Linear Groups PDF Author: Brian Parshall
Publisher: American Mathematical Soc.
ISBN: 0821825011
Category : Mathematics
Languages : en
Pages : 168

Get Book Here

Book Description
We consider the theory of quantum groups as a natural abstraction of the theory of affine group schemes. After establishing the foundational results as the theory of induced representations, rational cohomology, and the Hochschild-Serre spectral sequence, we take up a detailed investigation of the quantum linear group [italic]GL[italic subscript]q([italic]n). In particular, we develop the global and infinitesimal representation theory of [italic]GL[italic subscript]q([italic]n) and its subgroups.

Algebraic Geometry I: Schemes

Algebraic Geometry I: Schemes PDF Author: Ulrich Görtz
Publisher: Springer Nature
ISBN: 3658307331
Category : Mathematics
Languages : en
Pages : 634

Get Book Here

Book Description
This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.

Benford's Law

Benford's Law PDF Author: Steven J. Miller
Publisher: Princeton University Press
ISBN: 1400866596
Category : Mathematics
Languages : en
Pages : 465

Get Book Here

Book Description
Benford's law states that the leading digits of many data sets are not uniformly distributed from one through nine, but rather exhibit a profound bias. This bias is evident in everything from electricity bills and street addresses to stock prices, population numbers, mortality rates, and the lengths of rivers. Here, Steven Miller brings together many of the world’s leading experts on Benford’s law to demonstrate the many useful techniques that arise from the law, show how truly multidisciplinary it is, and encourage collaboration. Beginning with the general theory, the contributors explain the prevalence of the bias, highlighting explanations for when systems should and should not follow Benford’s law and how quickly such behavior sets in. They go on to discuss important applications in disciplines ranging from accounting and economics to psychology and the natural sciences. The contributors describe how Benford’s law has been successfully used to expose fraud in elections, medical tests, tax filings, and financial reports. Additionally, numerous problems, background materials, and technical details are available online to help instructors create courses around the book. Emphasizing common challenges and techniques across the disciplines, this accessible book shows how Benford’s law can serve as a productive meeting ground for researchers and practitioners in diverse fields.

Combinatorial and Additive Number Theory

Combinatorial and Additive Number Theory PDF Author: Melvyn B. Nathanson
Publisher: Springer
ISBN: 1493916017
Category : Mathematics
Languages : en
Pages : 309

Get Book Here

Book Description
This proceedings volume is based on papers presented at the Workshops on Combinatorial and Additive Number Theory (CANT), which were held at the Graduate Center of the City University of New York in 2011 and 2012. The goal of the workshops is to survey recent progress in combinatorial number theory and related parts of mathematics. The workshop attracts researchers and students who discuss the state-of-the-art, open problems and future challenges in number theory.

Open Problems in Mathematics

Open Problems in Mathematics PDF Author: John Forbes Nash, Jr.
Publisher: Springer
ISBN: 9783319812106
Category : Mathematics
Languages : en
Pages : 543

Get Book Here

Book Description
The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.

Analytic Number Theory

Analytic Number Theory PDF Author: Carl Pomerance
Publisher: Springer
ISBN: 3319222406
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
This volume contains a collection of research and survey papers written by some of the most eminent mathematicians in the international community and is dedicated to Helmut Maier, whose own research has been groundbreaking and deeply influential to the field. Specific emphasis is given to topics regarding exponential and trigonometric sums and their behavior in short intervals, anatomy of integers and cyclotomic polynomials, small gaps in sequences of sifted prime numbers, oscillation theorems for primes in arithmetic progressions, inequalities related to the distribution of primes in short intervals, the Möbius function, Euler’s totient function, the Riemann zeta function and the Riemann Hypothesis. Graduate students, research mathematicians, as well as computer scientists and engineers who are interested in pure and interdisciplinary research, will find this volume a useful resource. Contributors to this volume: Bill Allombert, Levent Alpoge, Nadine Amersi, Yuri Bilu, Régis de la Bretèche, Christian Elsholtz, John B. Friedlander, Kevin Ford, Daniel A. Goldston, Steven M. Gonek, Andrew Granville, Adam J. Harper, Glyn Harman, D. R. Heath-Brown, Aleksandar Ivić, Geoffrey Iyer, Jerzy Kaczorowski, Daniel M. Kane, Sergei Konyagin, Dimitris Koukoulopoulos, Michel L. Lapidus, Oleg Lazarev, Andrew H. Ledoan, Robert J. Lemke Oliver, Florian Luca, James Maynard, Steven J. Miller, Hugh L. Montgomery, Melvyn B. Nathanson, Ashkan Nikeghbali, Alberto Perelli, Amalia Pizarro-Madariaga, János Pintz, Paul Pollack, Carl Pomerance, Michael Th. Rassias, Maksym Radziwiłł, Joël Rivat, András Sárközy, Jeffrey Shallit, Terence Tao, Gérald Tenenbaum, László Tóth, Tamar Ziegler, Liyang Zhang.

Families of Automorphic Forms and the Trace Formula

Families of Automorphic Forms and the Trace Formula PDF Author: Werner Müller
Publisher: Springer
ISBN: 3319414240
Category : Mathematics
Languages : en
Pages : 581

Get Book Here

Book Description
Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.

Social Networks and the Economics of Sports

Social Networks and the Economics of Sports PDF Author: Panos M. Pardalos
Publisher: Springer
ISBN: 3319084402
Category : Business & Economics
Languages : en
Pages : 176

Get Book Here

Book Description
This book presents recent research developments in social networks, economics, management, marketing and optimization applied to sports. The volume will be of interest to students, researchers, managers from sports, policy makers and as well athletes. In particular the book contains research papers and reviews addressing the following issues: social network tools for player selection, movement and pricing in team sports, methods for ranking teams and evaluating players' performance, economics and marketing issues related to sports clubs, techniques for predicting outcomes of sports competitions, optimal strategies in sports, scheduling and managing sports tournaments, optimal referee assignment techniques and the economics and marketing of sports entertainment.