Quantum Dynamics of Bose-einstein Condensate in 1D Optical Lattice

Quantum Dynamics of Bose-einstein Condensate in 1D Optical Lattice PDF Author: Wei Li
Publisher:
ISBN: 9780549062998
Category :
Languages : en
Pages : 366

Get Book Here

Book Description
The realization of Bose Einstein condensation in ultra-cold dilute atomic gases, represented by a macroscopic occupation of ground state and the non-vanishing order parameter, makes the study of quantum many-body physics and condensed matter physics much easier. Especially, the quantum dynamics of condensate in the optical lattice serves as a perfect test-bed to study the condensed matter physics such as Josephson tunneling, Bloch oscillations, Landau-Zener tunneling. The interplay of mean field interaction and coherent Josephson tunneling leads to rich phases described by the Bose-Hubbard model such as Superfluid-Insulator transition at zero temperature and Berezinskii-Kosterlitz thouless transition at finite temperature. Furthermore, due to the extremely narrow momentum distribution of Bose Einstein condensate, it can be used to make interferometer as sensitive phase detector. The creation of number squeezed state of BEC enables the realization of Heisenberg-limited interferometer which can bring the noise below shot-noise level. The coherence time of such squeezed state interferometer can be longer than that of the coherent state interferometers. The quasi-2D geometry in 1D optical lattice can be used to study superfluid to normal fluid transition when topological order is broken. The studies of Kosterlitz-Thouless with inter-well coupling can lead to the interpretation of High TC superconductivity. This work will discuss the quantum dynamics of the Bose-Einstein condensate in 1D optical lattice.

Quantum Dynamics of Bose-einstein Condensate in 1D Optical Lattice

Quantum Dynamics of Bose-einstein Condensate in 1D Optical Lattice PDF Author: Wei Li
Publisher:
ISBN: 9780549062998
Category :
Languages : en
Pages : 366

Get Book Here

Book Description
The realization of Bose Einstein condensation in ultra-cold dilute atomic gases, represented by a macroscopic occupation of ground state and the non-vanishing order parameter, makes the study of quantum many-body physics and condensed matter physics much easier. Especially, the quantum dynamics of condensate in the optical lattice serves as a perfect test-bed to study the condensed matter physics such as Josephson tunneling, Bloch oscillations, Landau-Zener tunneling. The interplay of mean field interaction and coherent Josephson tunneling leads to rich phases described by the Bose-Hubbard model such as Superfluid-Insulator transition at zero temperature and Berezinskii-Kosterlitz thouless transition at finite temperature. Furthermore, due to the extremely narrow momentum distribution of Bose Einstein condensate, it can be used to make interferometer as sensitive phase detector. The creation of number squeezed state of BEC enables the realization of Heisenberg-limited interferometer which can bring the noise below shot-noise level. The coherence time of such squeezed state interferometer can be longer than that of the coherent state interferometers. The quasi-2D geometry in 1D optical lattice can be used to study superfluid to normal fluid transition when topological order is broken. The studies of Kosterlitz-Thouless with inter-well coupling can lead to the interpretation of High TC superconductivity. This work will discuss the quantum dynamics of the Bose-Einstein condensate in 1D optical lattice.

Quantum Gases: Finite Temperature And Non-equilibrium Dynamics

Quantum Gases: Finite Temperature And Non-equilibrium Dynamics PDF Author: Nick P Proukakis
Publisher: World Scientific
ISBN: 1908979704
Category : Science
Languages : en
Pages : 579

Get Book Here

Book Description
The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems.This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of editorial notes.Both graduate students and established researchers wishing to understand the state of the art will greatly benefit from this comprehensive and up-to-date review of non-equilibrium and finite temperature techniques in the exciting and expanding field of quantum gases and liquids./a

Non-equilibrium Dynamics of a Bose-Einstein Condensate in an Optical Lattice

Non-equilibrium Dynamics of a Bose-Einstein Condensate in an Optical Lattice PDF Author: Uttam Man Shrestha
Publisher:
ISBN:
Category :
Languages : en
Pages : 282

Get Book Here

Book Description


Bose-Einstein Condensation

Bose-Einstein Condensation PDF Author: Keith Burnett (Ed); Mark Edwar
Publisher: DIANE Publishing
ISBN: 0788137409
Category :
Languages : en
Pages : 213

Get Book Here

Book Description
Among the most remarkable effects that quantum mechanics adds to the catalog of the thermal properties of matter is "condensation" of an ideal gas of identical particles into a single quantum state, the principle of which was discovered in the theory of statistical mechanics by Bose and Einstein in the 1920s. Bose-Einstein condensation (BEC) is a mechanism for producing a macroscopic quantum system, and is exemplary of the macroscopic quantum phenomena of superconductivity and superfluidity.These 15 papers provide an introduction to current work on BEC.

Bose–Einstein Condensation in Dilute Gases

Bose–Einstein Condensation in Dilute Gases PDF Author: C. J. Pethick
Publisher: Cambridge University Press
ISBN: 1139811088
Category : Science
Languages : en
Pages : 538

Get Book Here

Book Description
Since an atomic Bose-Einstein condensate, predicted by Einstein in 1925, was first produced in the laboratory in 1995, the study of ultracold Bose and Fermi gases has become one of the most active areas in contemporary physics. This book explains phenomena in ultracold gases from basic principles, without assuming a detailed knowledge of atomic, condensed matter, and nuclear physics. This new edition has been revised and updated, and includes new chapters on optical lattices, low dimensions, and strongly-interacting Fermi systems. This book provides a unified introduction to the physics of ultracold atomic Bose and Fermi gases for advanced undergraduate and graduate students, as well as experimentalists and theorists. Chapters cover the statistical physics of trapped gases, atomic properties, cooling and trapping atoms, interatomic interactions, structure of trapped condensates, collective modes, rotating condensates, superfluidity, interference phenomena, and trapped Fermi gases. Problems are included at the end of each chapter.

Bose-Einstein Condensation and Superfluidity

Bose-Einstein Condensation and Superfluidity PDF Author: Lev Pitaevskii
Publisher: Oxford University Press
ISBN: 0191076686
Category : Science
Languages : en
Pages : 567

Get Book Here

Book Description
Ultracold atomic gases is a rapidly developing area of physics that attracts many young researchers around the world. Written by world renowned experts in the field, this book gives a comprehensive overview of exciting developments in Bose-Einstein condensation and superfluidity from a theoretical perspective. The authors also make sense of key experiments from the past twenty years with a special focus on the physics of ultracold atomic gases. These systems are characterized by a rich variety of features which make them similar to other important systems of condensed matter physics (like superconductors and superfluids). At the same time they exhibit very peculiar properties which are the result of their gaseous nature, the possibility of trapping in a variety of low dimensional and periodical configurations, and of manipulating the two-body interaction. The book presents a systematic theoretical description based on the most successful many-body approaches applied both to bosons and fermions, at equilibrium and out of equilibrium, at zero as well as at finite temperature. Both theorists and experimentalists will benefit from the book, which is mainly addressed to beginners in the field (master students, PhD students, young postdocs), but also to more experienced researchers who can find in the book novel inspirations and motivations as well as new insightful connections. Building on the authors' first book, Bose-Einstein Condensation (Oxford University Press, 2003), this text offers a more systematic description of Fermi gases, quantum mixtures, low dimensional systems and dipolar gases. It also gives further emphasis on the peculiar phenomenon of superfluidity and its key role in many observable properties of these ultracold quantum gases.

Soliton Management in Periodic Systems

Soliton Management in Periodic Systems PDF Author: Boris A. Malomed
Publisher: Springer Science & Business Media
ISBN: 0387293345
Category : Science
Languages : en
Pages : 188

Get Book Here

Book Description
During the past ten years, there has been intensive development in theoretical and experimental research of solitons in periodic media. This book provides a unique and informative account of the state-of-the-art in the field. The volume opens with a review of the existence of robust solitary pulses in systems built as a periodic concatenation of very different elements. Among the most famous examples of this type of systems are the dispersion management in fiber-optic telecommunication links, and (more recently) photonic crystals. A number of other systems belonging to the same broad class of spatially periodic strongly inhomogeneous media (such as the split-step and tandem models) have recently been identified in nonlinear optics, and transmission of solitary pulses in them was investigated in detail. Similar soliton dynamics occurs in temporal-domain counterparts of such systems, where they are subject to strong time-periodic modulation (for instance, the Feshbach-resonance management in Bose-Einstein condensates). Basis results obtained for all these systems are reviewed in the book. This timely work will serve as a useful resource for the soliton community.

Universal Themes of Bose-Einstein Condensation

Universal Themes of Bose-Einstein Condensation PDF Author: Nick P. Proukakis
Publisher: Cambridge University Press
ISBN: 1108138624
Category : Science
Languages : en
Pages : 663

Get Book Here

Book Description
Following an explosion of research on Bose–Einstein condensation (BEC) ignited by demonstration of the effect by 2001 Nobel prize winners Cornell, Wieman and Ketterle, this book surveys the field of BEC studies. Written by experts in the field, it focuses on Bose–Einstein condensation as a universal phenomenon, covering topics such as cold atoms, magnetic and optical condensates in solids, liquid helium and field theory. Summarising general theoretical concepts and the research to date - including novel experimental realisations in previously inaccessible systems and their theoretical interpretation - it is an excellent resource for researchers and students in theoretical and experimental physics who wish to learn of the general themes of BEC in different subfields.

Fundamentals And New Frontiers Of Bose-einstein Condensation

Fundamentals And New Frontiers Of Bose-einstein Condensation PDF Author: Masahito Ueda
Publisher: World Scientific Publishing Company
ISBN: 9813107448
Category : Science
Languages : en
Pages : 368

Get Book Here

Book Description
This book covers the fundamentals of and new developments in gaseous Bose-Einstein condensation. It begins with a review of fundamental concepts and theorems, and introduces basic theories describing Bose-Einstein condensation (BEC). It then discusses some recent topics such as fast-rotating BEC, spinor and dipolar BEC, low-dimensional BEC, balanced and imbalanced fermionic superfluidity including BCS-BEC crossover and unitary gas, and p-wave superfluidity.

Ultracold Atoms for Foundational Tests of Quantum Mechanics

Ultracold Atoms for Foundational Tests of Quantum Mechanics PDF Author: Robert J. Lewis-Swan
Publisher: Springer
ISBN: 3319410482
Category : Science
Languages : en
Pages : 161

Get Book Here

Book Description
This thesis presents a theoretical investigation into the creation and exploitation of quantum correlations and entanglement among ultracold atoms. Specifically, it focuses on these non-classical effects in two contexts: (i) tests of local realism with massive particles, e.g., violations of a Bell inequality and the EPR paradox, and (ii) realization of quantum technology by exploitation of entanglement, for example quantum-enhanced metrology. In particular, the work presented in this thesis emphasizes the possibility of demonstrating and characterizing entanglement in realistic experiments, beyond the simple “toy-models” often discussed in the literature. The importance and relevance of this thesis are reflected in a spate of recent publications regarding experimental demonstrations of the atomic Hong-Ou-Mandel effect, observation of EPR entanglement with massive particles and a demonstration of an atomic SU(1,1) interferometer. With a separate chapter on each of these systems, this thesis is at the forefront of current research in ultracold atomic physics.