Quantum Dot Lasers

Quantum Dot Lasers PDF Author: Victor Mikhailovich Ustinov
Publisher:
ISBN: 9780198526797
Category : Science
Languages : en
Pages : 306

Get Book Here

Book Description
The book addresses issues associated with physics and technology of injection lasers based on self-organized quantum dots. Fundamental and technological aspects of quantum dot edge-emitting lasers and VCSELs, their current status and future prospects are summarized and reviewed. Basic principles of QD formation using self-organization phenomena are reviewed. Structural and optical properties of self-organized QDs are considered with a number of examples in different material systems. Recent achievements in controlling the QD properties including the effects of vertical stacking, changing the matrix bandgap and the surface density of QDs are reviewed. The authors focus on the use of self-organized quantum dots in laser structures, fabrication and characterization of edge and surface emitting diode lasers, their properties and optimization with special attention paid to the relationship between structural and electronic properties of QDs and laser characteristics. The threshold and power characteristics of the state-of-the-art QD lasers are demonstrated. Issues related to the long-wavelength (1.3-mm) lasers on a GaAs substrate are also addressed and recent results on InGaAsN-based diode lasers presented for the purpose of comparison.

Quantum Dot Lasers

Quantum Dot Lasers PDF Author: Victor Mikhailovich Ustinov
Publisher:
ISBN: 9780198526797
Category : Science
Languages : en
Pages : 306

Get Book Here

Book Description
The book addresses issues associated with physics and technology of injection lasers based on self-organized quantum dots. Fundamental and technological aspects of quantum dot edge-emitting lasers and VCSELs, their current status and future prospects are summarized and reviewed. Basic principles of QD formation using self-organization phenomena are reviewed. Structural and optical properties of self-organized QDs are considered with a number of examples in different material systems. Recent achievements in controlling the QD properties including the effects of vertical stacking, changing the matrix bandgap and the surface density of QDs are reviewed. The authors focus on the use of self-organized quantum dots in laser structures, fabrication and characterization of edge and surface emitting diode lasers, their properties and optimization with special attention paid to the relationship between structural and electronic properties of QDs and laser characteristics. The threshold and power characteristics of the state-of-the-art QD lasers are demonstrated. Issues related to the long-wavelength (1.3-mm) lasers on a GaAs substrate are also addressed and recent results on InGaAsN-based diode lasers presented for the purpose of comparison.

Applied Nanophotonics

Applied Nanophotonics PDF Author: Sergey V. Gaponenko
Publisher: Cambridge University Press
ISBN: 1107145503
Category : Science
Languages : en
Pages : 453

Get Book Here

Book Description
An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.

Quantum Dot Devices

Quantum Dot Devices PDF Author: Zhiming M. Wang
Publisher: Springer Science & Business Media
ISBN: 1461435706
Category : Science
Languages : en
Pages : 375

Get Book Here

Book Description
Quantum dots as nanomaterials have been extensively investigated in the past several decades from growth to characterization to applications. As the basis of future developments in the field, this book collects a series of state-of-the-art chapters on the current status of quantum dot devices and how these devices take advantage of quantum features. Written by 56 leading experts from 14 countries, the chapters cover numerous quantum dot applications, including lasers, LEDs, detectors, amplifiers, switches, transistors, and solar cells. Quantum Dot Devices is appropriate for researchers of all levels of experience with an interest in epitaxial and/or colloidal quantum dots. It provides the beginner with the necessary overview of this exciting field and those more experienced with a comprehensive reference source.

Advances in Semiconductor Lasers and Applications to Optoelectronics

Advances in Semiconductor Lasers and Applications to Optoelectronics PDF Author: Mitra Dutta
Publisher: World Scientific
ISBN: 9789810242572
Category : Technology & Engineering
Languages : en
Pages : 458

Get Book Here

Book Description
Foreword by Charles H Townes This volume includes highlights of the theories underlying the essential phenomena occurring in novel semiconductor lasers as well as the principles of operation of selected heterostructure lasers. To understand scattering processes in heterostructure lasers and related optoelectronic devices, it is essential to consider the role of dimensional confinement of charge carriers as well as acoustical and optical phonons in quantum structures. Indeed, it is important to consider the confinement of both phonons and carriers in the design and modeling of novel semiconductor lasers such as the tunnel injection laser, quantum well intersubband lasers, and quantum dot lasers. The full exploitation of dimensional confinement leads to the exciting new capability of scattering time engineering in novel semiconductor lasers.As a result of continuing advances in techniques for growing quantum heterostructures, recent developments are likely to be followed in coming years by many more advances in semiconductor lasers and optoelectronics. As our understanding of these devices and the ability to fabricate them grow, so does our need for more sophisticated theories and simulation methods bridging the gap between quantum and classical transport.

The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics

The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics PDF Author: Edik U. Rafailov
Publisher: John Wiley & Sons
ISBN: 3527665609
Category : Science
Languages : en
Pages : 349

Get Book Here

Book Description
Written by a team of European experts in the field, this book addresses the physics, the principles, the engineering methods, and the latest developments of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices, as well as their applications in biophotonics. Recommended reading for physicists, engineers, students and lecturers in the fields of photonics, optics, laser physics, optoelectronics, and biophotonics.

Ultrafast Lasers Based on Quantum Dot Structures

Ultrafast Lasers Based on Quantum Dot Structures PDF Author: Edik U. Rafailov
Publisher: John Wiley & Sons
ISBN: 3527634495
Category : Science
Languages : en
Pages : 243

Get Book Here

Book Description
In this monograph, the authors address the physics and engineering together with the latest achievements of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices. Their approach encompasses a broad range of laser systems, while taking into consideration not only the physical and experimental aspects but also the much needed modeling tools, thus providing a holistic understanding of this hot topic.

Vertical External Cavity Surface Emitting Lasers

Vertical External Cavity Surface Emitting Lasers PDF Author: Michael Jetter
Publisher: John Wiley & Sons
ISBN: 3527807977
Category : Technology & Engineering
Languages : en
Pages : 584

Get Book Here

Book Description
Vertical External Cavity Surface Emitting Lasers Provides comprehensive coverage of the advancement of vertical-external-cavity surface-emitting lasers Vertical-external-cavity surface-emitting lasers (VECSELs) emit coherent light from the infrared to the visible spectral range with high power output. Recent years have seen new device developments – such as the mode-locked integrated (MIXSEL) and the membrane external-cavity surface emitting laser (MECSEL) – expand the application of VECSELs to include laser cooling, spectroscopy, telecommunications, biophotonics, and laser-based displays and projectors. In Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications, leading international research groups provide a comprehensive, fully up-to-date account of all fundamental and technological aspects of vertical external cavity surface emitting lasers. This unique book reviews the physics and technology of optically-pumped disk lasers and discusses the latest developments of VECSEL devices in different wavelength ranges. Topics include OP-VECSEL physics, continuous wave (CW) lasers, frequency doubling, carrier dynamics in SESAMs, and characterization of nonlinear lensing in VECSEL gain samples. This authoritative volume: Summarizes new concepts of DBR-free and MECSEL lasers for the first time Covers the mode-locking concept and its application Provides an overview of the emerging concept of self-mode locking Describes the development of next-generation OPS laser products Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications is an invaluable resource for laser specialists, semiconductor physicists, optical industry professionals, spectroscopists, telecommunications engineers and industrial physicists.

Passively Mode-Locked Semiconductor Lasers

Passively Mode-Locked Semiconductor Lasers PDF Author: Lina Jaurigue
Publisher: Springer
ISBN: 3319588745
Category : Science
Languages : en
Pages : 206

Get Book Here

Book Description
This thesis investigates the dynamics of passively mode-locked semiconductor lasers, with a focus on the influence of optical feedback on the noise characteristics. The results presented here are important for improving the performance of passively mode-locked semiconductor lasers and, at the same time, are relevant for understanding delay-systems in general. The semi-analytic results developed are applicable to a broad range of oscillatory systems with time-delayed feedback, making the thesis of relevance to various scientific communities. Passively mode-locked lasers can produce pulse trains and have applications in the contexts of optical clocking, microscopy and optical data communication, among others. Using a system of delay differential equations to model these devices, a combination of numerical and semi-analytic methods is developed and used to characterize this system.

Nonlinear Laser Dynamics

Nonlinear Laser Dynamics PDF Author: Kathy Lüdge
Publisher: John Wiley & Sons
ISBN: 3527639837
Category : Science
Languages : en
Pages : 412

Get Book Here

Book Description
A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research. By presenting both experimental and theoretical results, the distinguished authors consider solitary lasers with nano-structured material, as well as integrated devices with complex feedback sections. In so doing, they address such topics as the bifurcation theory of systems with time delay, analysis of chaotic dynamics, and the modeling of quantum transport. They also address chaos-based cryptography as an example of the technical application of highly nonlinear laser systems.

Semiconductor Lasers

Semiconductor Lasers PDF Author: Alexei Baranov
Publisher: Elsevier
ISBN: 0857096400
Category : Technology & Engineering
Languages : en
Pages : 671

Get Book Here

Book Description
Semiconductor lasers have important applications in numerous fields, including engineering, biology, chemistry and medicine. They form the backbone of the optical telecommunications infrastructure supporting the internet, and are used in information storage devices, bar-code scanners, laser printers and many other everyday products. Semiconductor lasers: Fundamentals and applications is a comprehensive review of this vital technology.Part one introduces the fundamentals of semiconductor lasers, beginning with key principles before going on to discuss photonic crystal lasers, high power semiconductor lasers and laser beams, and the use of semiconductor lasers in ultrafast pulse generation. Part two then reviews applications of visible and near-infrared emitting lasers. Nonpolar and semipolar GaN-based lasers, advanced self-assembled InAs quantum dot lasers and vertical cavity surface emitting lasers are all considered, in addition to semiconductor disk and hybrid silicon lasers. Finally, applications of mid- and far-infrared emitting lasers are the focus of part three. Topics covered include GaSb-based type I quantum well diode lasers, interband cascade and terahertz quantum cascade lasers, whispering gallery mode lasers and tunable mid-infrared laser absorption spectroscopy.With its distinguished editors and international team of expert contributors, Semiconductor lasers is a valuable guide for all those involved in the design, operation and application of these important lasers, including laser and telecommunications engineers, scientists working in biology and chemistry, medical practitioners, and academics working in this field. - Provides a comprehensive review of semiconductor lasers and their applications in engineering, biology, chemistry and medicine - Discusses photonic crystal lasers, high power semiconductor lasers and laser beams, and the use of semiconductor lasers in ultrafast pulse generation - Reviews applications of visible and near-infrared emitting lasers and mid- and far-infrared emitting lasers