Quantum Criticality and Unconventional Properties of Heavy Fermion Superconductor Ce1-xYbxCoIn5

Quantum Criticality and Unconventional Properties of Heavy Fermion Superconductor Ce1-xYbxCoIn5 PDF Author: Yogesh Pratap Singh
Publisher:
ISBN:
Category : Fermions
Languages : en
Pages : 137

Get Book Here

Book Description
The current research interest in heavy fermion (HF) materials is for their unconventional superconductivity, their quantum critical behavior and the breakdown of Fermi liquid (FL) theory. Presently, we lack a universal understanding of the breakdown of the FL behavior in these materials. However, there are evidences which suggest that the breakdown of the FL behavior and the unconventional superconducting (SC) pairing could be the result of a zero temperature phase transition, taking place at a quantum critical point (QCP). Heavy fermions are f-electron materials in which local moments at each lattice site interact with the spin of the conduction electrons sitting at that site via an exchange coupling. There are two energy scales that result from this interaction, the Kondo temperature TK (temperature below which the local moments are screened by the spins of the conduction electrons), and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, which characterize the induced coupling between two local moments. These two energy scales can be tuned by external parameters such as magnetic field, pressure, and chemical substitution. Such a tuning provides an opportunity to study the rich physics of these materials. This dissertation work presents experimental and theoretical studies on ab unique member of Ce-115 family of heavy fermions, i.e., Ce1-xYbxCoIn5. In the Ce-115 family of HFs, Cerium (Ce) contributes the f-electrons to form a Kondo lattice. The substitution of Ce ions by other rare earths is a widely used approach to study this system. Our selection of ytterbium for substituting Ce-site is unique in the sense that Yb appears in the intermediate valence state in this system (unlike any other substitution), thus giving rise to many of the unusual properties, which helped in the understanding the underlying physics of SC pairing, quantum criticality and non-Fermi liquid behavior in this HF. For the purpose of the studies presented in this dissertation, we utilized electronic, magneto- and thermal transport measurements. These measurements were done under high magnetic fields and pressures wherever needed. We developed a new method to identify the field-induced QCP in this material by studying its normal state. We utilized this method to locate QCP in the parent compound CeCoIn5 and determined its evolution with Yb doping in Ce1-xYbxCoIn5. Our findings show that quantum criticality in this system is suppressed by doping with Yb and a zero field QCP is obtained for the x = 0.20 Yb-doping level. Our studies also show the evolution of the many-body electronic state as the Kondo lattice of Ce moments is transformed into an array of Ce impurities with Yb-doping. Specifically, we observe a crossover from the predominantly localized Ce moment regime to the predominantly itinerant Yb f-electronic state regime. In the crossover regime, the magneto-transport behavior of the system indicates single impurity behavior of Ce ions. This result is surprising because the resistivity and specific heat measurements suggest significant amount of coherent scattering in the system. We attribute this unusual behavior to the hybridization of conduction electrons with mixed valence Yb ions, giving rise to an intermediate energy scale (TK ~ 14 K) between the single impurity regime of Ce and Ce Kondo lattice regime. Even more intriguing are the results at even higher Yb-doping levels. Large enough Yb concentrations show an increased coherence, unlike any other member of the Ce-115 family. We also identified another QCP at a higher Yb concentration of x = 0.75. An equally interesting feature in the doping dependence of this compound is the survival of NFL behavior throughout the phase diagram. The sub-linear temperature dependence of resistivity across the whole range of Yb concentrations suggests the presence of an unconventional scattering mechanism for the conduction electrons. Thus although the quantum spin fluctuations are suppressed at around 20 % of Yb doping, the NFL behavior is observed for the whole family. Our finding of an additional high doping QCP very well explains the large value of the Sommerfeld's coefficient and the persistent NFL behavior over the whole Yb-doping range. Given the complete suppression of the antiferromagnetic fluctuations for x > 0.20 and the very robust coherence and superconductivity, the possible electron pairing mechanism may involve an exchange of virtual magnetic fluctuations or a more unconventional mechanism involving virtual fluctuations into higher lying Ce crystalline field multiplets. We analyze theoretically the dependence of the superconducting critical temperature and Kondo lattice coherence temperature on pressure for both cases of clean and disordered systems. We use the approach of the large-N mean field theory, which works very well for Kondo lattice systems.

Quantum Criticality and Unconventional Properties of Heavy Fermion Superconductor Ce1-xYbxCoIn5

Quantum Criticality and Unconventional Properties of Heavy Fermion Superconductor Ce1-xYbxCoIn5 PDF Author: Yogesh Pratap Singh
Publisher:
ISBN:
Category : Fermions
Languages : en
Pages : 137

Get Book Here

Book Description
The current research interest in heavy fermion (HF) materials is for their unconventional superconductivity, their quantum critical behavior and the breakdown of Fermi liquid (FL) theory. Presently, we lack a universal understanding of the breakdown of the FL behavior in these materials. However, there are evidences which suggest that the breakdown of the FL behavior and the unconventional superconducting (SC) pairing could be the result of a zero temperature phase transition, taking place at a quantum critical point (QCP). Heavy fermions are f-electron materials in which local moments at each lattice site interact with the spin of the conduction electrons sitting at that site via an exchange coupling. There are two energy scales that result from this interaction, the Kondo temperature TK (temperature below which the local moments are screened by the spins of the conduction electrons), and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, which characterize the induced coupling between two local moments. These two energy scales can be tuned by external parameters such as magnetic field, pressure, and chemical substitution. Such a tuning provides an opportunity to study the rich physics of these materials. This dissertation work presents experimental and theoretical studies on ab unique member of Ce-115 family of heavy fermions, i.e., Ce1-xYbxCoIn5. In the Ce-115 family of HFs, Cerium (Ce) contributes the f-electrons to form a Kondo lattice. The substitution of Ce ions by other rare earths is a widely used approach to study this system. Our selection of ytterbium for substituting Ce-site is unique in the sense that Yb appears in the intermediate valence state in this system (unlike any other substitution), thus giving rise to many of the unusual properties, which helped in the understanding the underlying physics of SC pairing, quantum criticality and non-Fermi liquid behavior in this HF. For the purpose of the studies presented in this dissertation, we utilized electronic, magneto- and thermal transport measurements. These measurements were done under high magnetic fields and pressures wherever needed. We developed a new method to identify the field-induced QCP in this material by studying its normal state. We utilized this method to locate QCP in the parent compound CeCoIn5 and determined its evolution with Yb doping in Ce1-xYbxCoIn5. Our findings show that quantum criticality in this system is suppressed by doping with Yb and a zero field QCP is obtained for the x = 0.20 Yb-doping level. Our studies also show the evolution of the many-body electronic state as the Kondo lattice of Ce moments is transformed into an array of Ce impurities with Yb-doping. Specifically, we observe a crossover from the predominantly localized Ce moment regime to the predominantly itinerant Yb f-electronic state regime. In the crossover regime, the magneto-transport behavior of the system indicates single impurity behavior of Ce ions. This result is surprising because the resistivity and specific heat measurements suggest significant amount of coherent scattering in the system. We attribute this unusual behavior to the hybridization of conduction electrons with mixed valence Yb ions, giving rise to an intermediate energy scale (TK ~ 14 K) between the single impurity regime of Ce and Ce Kondo lattice regime. Even more intriguing are the results at even higher Yb-doping levels. Large enough Yb concentrations show an increased coherence, unlike any other member of the Ce-115 family. We also identified another QCP at a higher Yb concentration of x = 0.75. An equally interesting feature in the doping dependence of this compound is the survival of NFL behavior throughout the phase diagram. The sub-linear temperature dependence of resistivity across the whole range of Yb concentrations suggests the presence of an unconventional scattering mechanism for the conduction electrons. Thus although the quantum spin fluctuations are suppressed at around 20 % of Yb doping, the NFL behavior is observed for the whole family. Our finding of an additional high doping QCP very well explains the large value of the Sommerfeld's coefficient and the persistent NFL behavior over the whole Yb-doping range. Given the complete suppression of the antiferromagnetic fluctuations for x > 0.20 and the very robust coherence and superconductivity, the possible electron pairing mechanism may involve an exchange of virtual magnetic fluctuations or a more unconventional mechanism involving virtual fluctuations into higher lying Ce crystalline field multiplets. We analyze theoretically the dependence of the superconducting critical temperature and Kondo lattice coherence temperature on pressure for both cases of clean and disordered systems. We use the approach of the large-N mean field theory, which works very well for Kondo lattice systems.

Quantum Critical Phenomena of Valence Transition

Quantum Critical Phenomena of Valence Transition PDF Author: Shinji Watanabe
Publisher: Springer Nature
ISBN: 9819935180
Category : Science
Languages : en
Pages : 220

Get Book Here

Book Description
This book comprehensively presents an unconventional quantum criticality caused by valence fluctuations, which offers theoretical understanding of unconventional Fermi-liquid properties in cerium- and ytterbium-based heavy fermion metals including CeCu2(Si,Ge)2 and CeRhIn5 under pressure, and quasicrystal β-YbAlB4 and Yb15Al34Au51. The book begins with an introduction to fundamental concepts for heavy fermion systems, valence fluctuation, and quantum phase transition, including self-consistent renormalization group theory. A subsequent chapter is devoted to a comprehensive description of the theory of the unconventional quantum criticality based on a valence transition, featuring explicit temperature dependence of various physical quantities, which allows for comparisons to relevant experiments. Lastly, it discusses how ubiquitous the valence fluctuation is, presenting candidate materials not only in heavy fermions, but also in strongly correlated electrons represented by high-Tc superconductor cuprates. Introductory chapters provide useful materials for learning fundamentals of heavy fermion systems and their theory. Further, experimental topics relevant to valence fluctuations are valuable resources for those who are new to the field to easily catch up with experimental background and facts.

Heavy Fermions, Quantum Criticality, and Unconventional Superconductivity in Filled Skutterudites and Related Materials

Heavy Fermions, Quantum Criticality, and Unconventional Superconductivity in Filled Skutterudites and Related Materials PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description
The main goal of this program was to explore the possibility of novel states and behaviors in Pr-based system exhibiting quantum critical behavior, PrOs4Sb12. Upon small changes of external parameter, such as magnetic field, physical properties of PrOs4Sb12 are drastically altered from those corresponding to a superconductor, to heavy fermion, to field-induced ordered phase with primary quadrupolar order parameter. All these states are highly unconventional and not understood in terms of current theories thus offer an opportunity to expand our knowledge and understanding of condensed matter. At the same time, these novel states and behaviors are subjects to intense international controversies. In particular, two superconducting phases with different transition temperatures were observed in some samples and not observed in others leading to speculations that sample defects might be partially responsible for these exotic behaviors. This work clearly established that crystal disorder is important consideration, but contrary to current consensus this disorder suppresses exotic behavior. Superconducting properties imply unconventional inhomogeneous state that emerges from unconventional homogeneous normal state. Comprehensive structural investigations demonstrated that upper superconducting transition is intrinsic, bulk, and unconventional. The high quality of in-house synthesized single crystals was indirectly confirmed by de Haas-van Alphen quantum oscillation measurements. These measurements, for the first time ever reported, spanned several different phases, offering unprecedented possibility of studying quantum oscillations across phase boundaries.

Exploring Heavy Fermion Materials Near a Quantum Critical Point

Exploring Heavy Fermion Materials Near a Quantum Critical Point PDF Author: Sooyoung Jang
Publisher:
ISBN: 9781339033136
Category :
Languages : en
Pages : 108

Get Book Here

Book Description
Results for two categories of heavy fermion systems : (1) a new type of non-centrosymmetric heavy fermion system R2TM12Pn7 (R = rare earth, TM = transition metal, Pn = P, As), and (2) Yb substitution in CeCoIn5, which is a heavy fermion superconductor, Ce1-xYbxCoIn5, are described. The phenomena seen in the system R2TM12Pn7 are discussed in terms of strong hybridization between the localized f-electron states and the conduction electron states, such as a crossover between Fermi liquid and non-Fermi liquid behavior in Yb2Ni12P7, or the presence of a large value of the Sommerfeld coefficient, [gamma] ~ 650 mJ/mol Sm K2 in Sm2Ni12P7. The extraordinary electronic phenomena found in the system Ce1-xYbxCoIn5 include Yb valence fluctuations, a change in the Fermi surface topology, and suppression of the quantum critical field occurring at a nominal concentration of x ~ 0.2. However, the suppression of the superconducting critical temperature with nominal Yb concentration x for bulk single crystals is much weaker than that observed in thin film samples. The actual Yb composition of bulk single crystals is found to be about 1/3 of the nominal concentration, resolving the discrepancy between the variation of the physical properties of Ce1-xYbxCoIn5 single crystals and thin films with Yb concentrations.

Quantum Criticality in the Heavy-Fermion Superconductor Cerium-cobalt-indium [microform]

Quantum Criticality in the Heavy-Fermion Superconductor Cerium-cobalt-indium [microform] PDF Author: Johnpierre Paglione
Publisher: Library and Archives Canada = Bibliothèque et Archives Canada
ISBN: 9780494028896
Category :
Languages : en
Pages : 168

Get Book Here

Book Description


Superconductivity, Magnetism, Quantum Criticality, And Hidden Order In Quantum Materials

Superconductivity, Magnetism, Quantum Criticality, And Hidden Order In Quantum Materials PDF Author: Dom Lal Kunwar
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The heavy fermions (HF) are strongly correlated electron systems consisting of intermetallic compounds of lanthanides and actinides ions with f -electrons unfilled shells. These systems are very rich in physics and the interplay between competing interactions results in various interesting physical phenomena such as heavy fermion behavior, unconventional superconductivity, non-Fermi-liquid behavior, coexistence of superconductivity and magnetism, and quantum criticality. The origin of such phenomena comes from the interaction of itinerant conduction states with the partially filled 4f - or 5f -electron states of rare earth elements. The study of such important physical phenomena can be possible by tuning the system using nonthermal control parameters, such as chemical composition, magnetic field, and applied pressure. So, studying the chemical pressure effect on heavy fermion systems with or without magnetic field is an intriguing idea to construct various phase diagrams and study their phase transitions. We performed heat capacity (HC), magnetoresistance (MR), and resistivity measurements on the Ce-based 115 and U-based 122 heavy fermion materials at low temperatures. We studied the nature of the quantum critical point, second-order phase transition, and the possible interplay between superconductivity and magnetism. First, we were motivated by the possibility of observing the coexistence of magnetism and unconventional superconductivity in the heavy fermion Ce1-xSmxCoIn5 alloys. We performed specific heat, MR, and resistivity measurements in different magnetic fields. We investigated how the samarium substitution on the cerium site affects the magnetic-field-tuned quantum criticality of stoichiometric CeCoIn5. We have observed Fermi-liquid to non-Fermi-liquid crossovers in the temperature dependence of the electronic specific heat and resistivity at higher external magnetic fields. We obtained the magnetic-field-induced quantum critical point (HQCP) by extrapolating the crossover temperature to zero temperature. Furthermore, we performed a scaling analysis of the electronic specific heat and confirmed the existence of the QCP. According to our findings, the magnitude of (HQCP) decreases as the samarium content rises and ultimately becomes zero. The electronic specific heat and resistivity data reveal a zero-field QCP for xcr = 0.15, which falls inside the antiferromagnetic and superconducting coexistence region. Next, we performed measurements of the heat capacity as a function of temperature in a single crystals URu2-xOsxSi2. Our experimental results show that the critical temperature of the second-order phase transition increases while the value of the Sommerfeld coefficient in the ordered state decreases with an increase in osmium concentration. We also observed the increase in the magnitude of the heat capacity at the critical temperature and a broadening of the critical fluctuations region with an increase in Os concentration. We analyze the experimental data using the Haule- Kotliar model, which identifies the 'hidden order' transition in the parent material URu2Si2 as a transition to a state with nonzero hexadecapolar moment. We showed that our experimental results are consistent with this model. In conclusion, we studied the interplay between superconductivity and magnetism in Ce based 115 and U based 122 single crystal alloys using heat capacity, magnetoresistivity, and resistivity measurements in both cryogenic systems including He-4 and He-3. The understating of various phenomena in these heavy fermions could be helpful in developing higher transition temperature superconductors, energy storage devices, quantum computers, and memory devices in the future.

Quantum Criticality and Fermisurface Instabilities Investigation by Pressure and Quantum Oscillation Measurements on Ce and Ybbased Heavy Fermion Compounds

Quantum Criticality and Fermisurface Instabilities Investigation by Pressure and Quantum Oscillation Measurements on Ce and Ybbased Heavy Fermion Compounds PDF Author: Mounir Boukahil
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The superconductivity had been thought to be incompatible with the magnetism, because the former originates from the weak attractive leading to the formation of Cooper pairs, whereas the latter is based on the strong Coulomb repulsive force, leading also to strong electronic correlations. Unconventional superconductors,which include heavy fermion systems, high-Tc cuprates, organic superconductors, and iron-pnictides, is a major topic of condensed matter physics. In all these systems, it has been understood that magnetism can even plays an important role for the pairing mechanism, so that both phenomena can coexist and even favour each other.Our target is on heavy fermion systems, namely uranium and rare earth compounds, where the 5f or 4f electrons which have a dual nature (itinerant/localized), play an important role. More precisely, we will focus on the ferromagnetic superconductors and their quantum criticality. In this field, new materials open new frontiers of research. The student will participate in this stream. He will learn and develop the fundamental crystal growth techniques, such as Czochralski, flux, and Bridgeman method. Since high quality single crystals are essential to elucidate the superconducting properties, a lot of efforts will be devoted to improve the quality of the samples. The next target is the quantum oscillation measurements, which allow a detailed microscopic observation of the heavy electronic state and of the topology of the Fermi surface. They require both very low temperature and high fields, like the study of the field induced superconducting phases in these compounds (like URhGe or UCoGe). The student will perform the measurements under extreme conditions, namely high fields up to 15T in SPSMS, or up to 30T in LNCMI, at low temperatures down to 30 mK, and high pressure up to 3 GPa.From the educational point of view, it is ideal that the student starts to synthesize a material, characterizes it, performs the low temperature measurements by him/herself throughout the PhD period, and get used to the exciting measurements under extreme conditions in a large scale facility like the LNCMI. Such a wide spectrum is rather rare in Europe, but our group ("SPSMS/LNCMI) can provide such a unique opportunity, helping the student to become an independent researcher. It should be noted that the experiments in SPSMS and LNCMI are quite complementary each other. For quantum oscillation study, high fields, low temperatures and high quality singles are inevitably important. In general, the precise measurements at high fields up to 15T would be enough in order to determine the Fermi surface topology and the effective mass, which canbe done in SPSMS. However, the specific case, such as Lifshitz transition, field induced quantum critical phenomena, requires higher fields than 15T, which can be achieved by the resistive magnet in LNCMI.This project is supported by the ANR (CORMAT, SINUS) and the ERC starting grant “NewHeavyFermion”.Recently in SPSMS we purchased a top-loading dilution refrigerator for the quantum oscillation measurements, and started the installation. By the end of this summer, hopefully we detect the first de Haas-van Alphen signal at high fields up to 15T and at temperatures down to 30mK. Furthermore, we started to install the flux crystal growth equipment this month, involving the reconstruction of the room for the safe treatment of uranium compounds.

The Search for Quantum Criticality Near the Convergence of Hidden Order and Ferromagnetism

The Search for Quantum Criticality Near the Convergence of Hidden Order and Ferromagnetism PDF Author: Nicholas Patrick Butch
Publisher:
ISBN:
Category :
Languages : en
Pages : 149

Get Book Here

Book Description
The properties of the heavy fermion superconductor URu2Si2 have been investigated as a function of Re substitution. Single crystals of URu2-xRexSi2, for 0 ̲ x

Magnetism in Heavy Fermion Systems

Magnetism in Heavy Fermion Systems PDF Author: Harry Brian Radousky
Publisher: World Scientific
ISBN: 9810243480
Category : Science
Languages : en
Pages : 395

Get Book Here

Book Description
Annotation The six articles are heavily weighted toward an experimental perspective, but one details a particular set of theoretical models for f-electron systems, and the introduction overviews the role of magnetism in heavy fermion materials as well as summarizing the content of each subsequent article. They in turn cover superconductors, muon spin relaxation studies of small-moment heavy fermion systems, neutron scattering, and magnetism in the praseodymium-containing cuprates. Annotation copyrighted by Book News Inc., Portland, OR.

Modern Condensed Matter Physics

Modern Condensed Matter Physics PDF Author: Steven M. Girvin
Publisher: Cambridge University Press
ISBN: 110713739X
Category : Science
Languages : en
Pages : 720

Get Book Here

Book Description
Comprehensive and accessible coverage from the basics to advanced topics in modern quantum condensed matter physics.