Quantum Correlations in Field Theory and Integrable Systems

Quantum Correlations in Field Theory and Integrable Systems PDF Author: Stefano Evangelisti
Publisher: Minkowski Institute Press
ISBN: 1927763096
Category : Science
Languages : en
Pages : 213

Get Book Here

Book Description
This doctoral thesis analytically and numerically examines some of the most important concepts in quantum correlations in low-dimensional physics: entanglement and out-of-equilibrium dynamics. As John Bell once said: "Entanglement expresses the spooky nonlocality inherent to quantum mechanics", and its study not only concerns the foundations of any quantum theory, but also has important applications in quantum information and condensed matter theory, amongst others. The first chapters are devoted to the study of "entanglement entropies", a popular measure of the "quantumness" of a physical system. The main focus of the analysis is the one-dimensional XYZ spin-1/2 chain in equilibrium, an interacting theory which in addition to being integrable also has interesting scaling limits, such as the sine-Gordon field theory. Moving away from equilibrium the subsequent chapters deal with the dynamics of quantum correlators after an instantaneous quantum quench. The emphasis is on two different models and techniques; the transverse field Ising chain is studied using the form-factor approach and the O(3) non-linear sigma model is studied by means of the semi-classical theory. In the final chapter the author highlights an important general result: in the absence of long-range interactions in the final Hamiltonian the dynamics of a quantum system are determined by the same statistical ensemble that describes static correlations.

Quantum Correlations in Field Theory and Integrable Systems

Quantum Correlations in Field Theory and Integrable Systems PDF Author: Stefano Evangelisti
Publisher: Minkowski Institute Press
ISBN: 1927763096
Category : Science
Languages : en
Pages : 213

Get Book Here

Book Description
This doctoral thesis analytically and numerically examines some of the most important concepts in quantum correlations in low-dimensional physics: entanglement and out-of-equilibrium dynamics. As John Bell once said: "Entanglement expresses the spooky nonlocality inherent to quantum mechanics", and its study not only concerns the foundations of any quantum theory, but also has important applications in quantum information and condensed matter theory, amongst others. The first chapters are devoted to the study of "entanglement entropies", a popular measure of the "quantumness" of a physical system. The main focus of the analysis is the one-dimensional XYZ spin-1/2 chain in equilibrium, an interacting theory which in addition to being integrable also has interesting scaling limits, such as the sine-Gordon field theory. Moving away from equilibrium the subsequent chapters deal with the dynamics of quantum correlators after an instantaneous quantum quench. The emphasis is on two different models and techniques; the transverse field Ising chain is studied using the form-factor approach and the O(3) non-linear sigma model is studied by means of the semi-classical theory. In the final chapter the author highlights an important general result: in the absence of long-range interactions in the final Hamiltonian the dynamics of a quantum system are determined by the same statistical ensemble that describes static correlations.

New Trends In Quantum Integrable Systems - Proceedings Of The Infinite Analysis 09

New Trends In Quantum Integrable Systems - Proceedings Of The Infinite Analysis 09 PDF Author: Boris Feigin
Publisher: World Scientific
ISBN: 9814462926
Category : Mathematics
Languages : en
Pages : 517

Get Book Here

Book Description
The present volume is the result of the international workshop on New Trends in Quantum Integrable Systems that was held in Kyoto, Japan, from 27 to 31 July 2009. As a continuation of the RIMS Research Project “Method of Algebraic Analysis in Integrable Systems” in 2004, the workshop's aim was to cover exciting new developments that have emerged during the recent years.Collected here are research articles based on the talks presented at the workshop, including the latest results obtained thereafter. The subjects discussed range across diverse areas such as correlation functions of solvable models, integrable models in quantum field theory, conformal field theory, mathematical aspects of Bethe ansatz, special functions and integrable differential/difference equations, representation theory of infinite dimensional algebras, integrable models and combinatorics.Through these topics, the reader can learn about the most recent developments in the field of quantum integrable systems and related areas of mathematical physics.

Quantum Inverse Scattering Method and Correlation Functions

Quantum Inverse Scattering Method and Correlation Functions PDF Author: V. E. Korepin
Publisher: Cambridge University Press
ISBN: 9780521586467
Category : Mathematics
Languages : en
Pages : 582

Get Book Here

Book Description
The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Go rdon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians.The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results.The book will be essential reading for all mathematical physicists working in field theory and statistical physics.

Quantum Field Theory in Condensed Matter Physics

Quantum Field Theory in Condensed Matter Physics PDF Author: Alexei M. Tsvelik
Publisher: Cambridge University Press
ISBN: 1139440500
Category : Science
Languages : en
Pages : 361

Get Book Here

Book Description
This book is a course in modern quantum field theory as seen through the eyes of a theorist working in condensed matter physics. It contains a gentle introduction to the subject and therefore can be used even by graduate students. The introductory parts include a derivation of the path integral representation, Feynman diagrams and elements of the theory of metals including a discussion of Landau–Fermi liquid theory. In later chapters the discussion gradually turns to more advanced methods used in the theory of strongly correlated systems. The book contains a thorough exposition of such non-perturbative techniques as 1/N-expansion, bosonization (Abelian and non-Abelian), conformal field theory and theory of integrable systems. The book is intended for graduate students, postdoctoral associates and independent researchers working in condensed matter physics.

Integrable Quantum Field Theories

Integrable Quantum Field Theories PDF Author: L. Bonora
Publisher: Springer Science & Business Media
ISBN: 1489915168
Category : Science
Languages : en
Pages : 330

Get Book Here

Book Description
Proceedings of a NATO ARW held in Como, Italy, September 14-19, 1992

Fifty Years of Mathematical Physics

Fifty Years of Mathematical Physics PDF Author: Molin Ge
Publisher: World Scientific Publishing Company
ISBN: 9814340960
Category : Science
Languages : en
Pages : 596

Get Book Here

Book Description
This unique volume summarizes with a historical perspective several of the major scientific achievements of Ludwig Faddeev, with a foreword by Nobel Laureate C N Yang. The volume that spans over fifty years of Faddeev's career begins where he started his own scientific research, in the subject of scattering theory and the three-body problem. It then continues to describe Faddeev's contributions to automorphic functions, followed by an extensive account of his many fundamental contributions to quantum field theory including his original article on ghosts with Popov. Faddeev's contributions to soliton theory and integrable models are then described, followed by a survey of his work on quantum groups. The final scientific section is devoted to Faddeev's contemporary research including articles on his long-term interest in constructing knotted solitons and understanding confinement. The volume concludes with his personal view on science and mathematical physics in particular.

Condensed Matter Field Theory

Condensed Matter Field Theory PDF Author: Alexander Altland
Publisher: Cambridge University Press
ISBN: 0521769752
Category : Science
Languages : en
Pages : 785

Get Book Here

Book Description
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.

Integrable Systems in Quantum Field Theory and Statistical Mechanics

Integrable Systems in Quantum Field Theory and Statistical Mechanics PDF Author: M. Jimbo
Publisher: Elsevier
ISBN: 1483295257
Category : Science
Languages : en
Pages : 695

Get Book Here

Book Description
Integrable Sys Quantum Field Theory

Particles and Fields

Particles and Fields PDF Author: Gordon W. Semenoff
Publisher: Springer Science & Business Media
ISBN: 1461214106
Category : Science
Languages : en
Pages : 501

Get Book Here

Book Description
The focus of this volume is on quantum field theory: inegrable theories, statistical systems, and applications to condensed-matter physics. It covers some of the most significant recent advances in theoretical physics at a level accessible to advanced graduate students. The contributions, each by a noted researcher, dicuss such topics as: some remarkable features of integrable Toda field theories (E. Corrigan), properties of a gas of interacting Fermions in a lattice of magnetic ions (J. Feldman &. al.), how quantum groups arise in three-dimensional topological quantum field thory (D. Freed), a method for computing correlation functions of solvable lattice models (T. Miwa), matrix models discussed from the point of view of integrable systems (A. Morozov), localization of path integrals in certain equivariant cohomologies (A. Niemi), Calogero-Moser systems (S. Ruijsenaars), planar gauge theories with broken symmetries (M. de Wild Propitius & F.A. Bais), quantum-Hall fluids (A. Capelli & al.), spectral theory of quantum vortex operators (P.I. Ettinghoff).

Integrable Systems: From Classical to Quantum

Integrable Systems: From Classical to Quantum PDF Author: John P. Harnad
Publisher: American Mathematical Soc.
ISBN: 0821820931
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
This volume presents the papers based upon lectures given at the 1999 Séminaire de Mathémathiques Supérieurs held in Montreal. It includes contributions from many of the most active researchers in the field. This subject has been in a remarkably active state of development throughout the past three decades, resulting in new motivation for study in r s3risingly different directions. Beyond the intrinsic interest in the study of integrable models of many-particle systems, spin chains, lattice and field theory models at both the classical and the quantum level, and completely solvable models in statistical mechanics, there have been new applications in relation to a number of other fields of current interest. These fields include theoretical physics and pure mathematics, for example the Seiberg-Witten approach to supersymmetric Yang-Mills theory, the spectral theory of random matrices, topological models of quantum gravity, conformal field theory, mirror symmetry, quantum cohomology, etc. This collection gives a nice cross-section of the current state of the work in the area of integrable systems which is presented by some of the leading active researchers in this field. The scope and quality of the articles in this volume make this a valuable resource for those interested in an up-to-date introduction and an overview of many of the main areas of study in the theory of integral systems.