Quantitative Trait Loci Influencing Grain Protein Content and Grain Yield in Bread Wheat (Triticum Aestivum)

Quantitative Trait Loci Influencing Grain Protein Content and Grain Yield in Bread Wheat (Triticum Aestivum) PDF Author: Hun-Sun Hwang
Publisher:
ISBN:
Category : Plant proteins
Languages : en
Pages : 346

Get Book Here

Book Description


Quantitative Trait Loci Mapping of Yield, Its Related Traits, and Spike Morphology Factors in Winter Wheat (Triticum Aestivum L. )

Quantitative Trait Loci Mapping of Yield, Its Related Traits, and Spike Morphology Factors in Winter Wheat (Triticum Aestivum L. ) PDF Author: Robert Christopher Gaynor
Publisher:
ISBN:
Category : Factor analysis
Languages : en
Pages : 170

Get Book Here

Book Description
Increasing grain yield in wheat (Triticum aestivum L.) is a challenging task, because yield is a complex trait controlled by many genes and highly influenced by environmental factors. The genetic control of yield components and other traits associated with yield may be less complex and thus more manageable for breeding. This study seeks to identify quantitative trait loci (QTLs) for these traits. Two new genetic linkage maps were constructed from recombinant inbred lines (RILs) derived from crosses between the Oregon soft white winter wheat variety Tubbs and a Western European hard red winter wheat variety, Einstein. A third linkage map was constructed from RILs from a cross with Tubbs and a Western European experimental hard red winter wheat line. A combination of Diversity Arrays Technology (DArT), Simple Sequence Repeat (SSR), orw5, and B1 markers were used to construct genetic linkage maps. Two replications of the RIL populations were grown in yield trial sized plots at Corvallis, OR and Pendleton, OR in 2009. The RILs were evaluated for grain yield, spikes per m2, fertile spikelets per spike, sterile spikelets per spike, seeds per spike, seeds per fertile spikelet, average seed weight, growing degree days (GDD) to flowering, GDD to physiological maturity, GDD of grain fill, plant height, test weight, and percent grain protein. Composite interval mapping (CIM) detected 146 QTLs for these traits spread across all chromosomes except for 6D. Thirty six percent of all of the QTLs detected were in close proximity to four loci: Rht-B1, Rht-D1, B1, and Xgwm372. The use of factor analysis to aid in QTL mapping for correlated traits related to spike morphology was explored. Quantitative trait loci mapping of factor scores for these traits potentially showed an increase in statistical power to detect QTLs and a decrease in the probability of type I error over mapping the traits individually.

Climate Change and Crop Production

Climate Change and Crop Production PDF Author: Matthew P. Reynolds
Publisher: CABI
ISBN: 1845936337
Category : Science
Languages : en
Pages : 310

Get Book Here

Book Description
Agricultural, botanical, and social scientists from the four quarters of the world address the impact of climate change on crop productivity, some approaches to adapt plants to both biotic and abiotic stresses, and measures to reduce greenhouse gases. They cover predictions of climate change within the context of agriculture, adapting to biotic and abiotic stresses through crop breeding, sustainable and resource-conserving technologies for adapting to and mitigating climate change, and new tools for enhancing crop adaptation to climate change. Specific topics include economic impacts of climate change on agriculture to 2030, breeding for adaptation to heat and drought stress, managing resident soil microbial community structure and function to suppress the development of soil-borne diseases, and applying geographical information systems (GIS) and crop simulation modeling in climate change research.

Proceedings of FSTP3 Congress - A Sustainable Durum Wheat Chain for Food Security and Healthy Lives

Proceedings of FSTP3 Congress - A Sustainable Durum Wheat Chain for Food Security and Healthy Lives PDF Author: Brian L. Beres
Publisher: Frontiers Media SA
ISBN: 2889668541
Category : Science
Languages : en
Pages : 223

Get Book Here

Book Description


Quantitative Trait Locus Mapping of Agronomic, Physiological, and End-use Quality Traits of Common Wheat (T. Aestivum)

Quantitative Trait Locus Mapping of Agronomic, Physiological, and End-use Quality Traits of Common Wheat (T. Aestivum) PDF Author: Junli Zhang (Doctoral student)
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 416

Get Book Here

Book Description
Grain yield (GY) is always the first priority in wheat (Triticum aestivum L.) breeding; however, progress in improvement of this trait is hampered due to quantitative inheritance, low heritability, and confounding environmental effects. Thanks to the advancements of high throughput genotyping and phenotyping technologies, both molecular markers and physiological traits are now promising indirect selection tools in breeding for this trait and other traits. Besides grain yield, grain quality is another important respect in wheat breeding, and one of the quality traits is the Hagberg falling number (FN), which is commonly used in grain grading. The FN test has a genetic component but is also strongly influenced by environmental conditions during the reproductive growth stage, including excessive moisture, extreme temperature, and biotic and abiotic stresses. The objective of the current studies was to identify potential genomic regions and molecular markers that influence GY, three important physiological traits (canopy temperature, CT; chlorophyll content index, CCI; flag leaf senescence, FLS) that could impact grain yield during heat and moisture stress, and FN by QTL mapping approaches. A winter wheat population of 159 recombinant inbred lines (RILs) from the cross of ID0444 and Rio Blanco were used to map QTL for GY, CT, CCI and FLS, and a total of 110 hard white spring (HWS) wheat accessions from the National Small Grain Collection (NSGC) were used in genome-wide association mapping of FN. GY was evaluated under three field conditions, rainfed, terminal drought (water stress applied after anthesis), and fully irrigated, with a total of six location-year environments. QTL mapping was conducted for main effect (G) of GY, and the genotype x environment interaction (GEI) effect of GY. A total of 17 QTL were associated with G and 13 QTL associated with GEI, and nine of 13 QTL for GEI were mapped in the flanking chromosomal regions of QTL for GEI. One QTL, Q.Gy.ui-1B.2 found on chromosome 1B, was associated with GY in all six individual environments. Significant QTL x environment interaction (QEI), QTL x QTL interaction (QQI) and QTL x QTL x environment (QQEI) were also identified. The present study showed that the QEI and QQI were as important as the QTL main effect of GY, and they should be taken into consideration in future QTL studies and marker-assisted selection (MAS). The three physiological traits, CT, CCI and FLS, which have been reported to be closely related to grain yield of wheat in diverse environments, were evaluated in two terminal drought and one rainfed environments in southeastern Idaho. Correlation results showed that CT and FLS were highly correlated with GY but the relationship between CCI and GY varied among the three environments. FLS was closely related to heading date (HD) and its effect on grain yield might be determined by HD in the RIL population used in the study. Stepwise multiple regression showed that CT and FLS could predict grain yield effectively and could be used as indirect selection criteria in wheat breeding. A total of 27 main effect QTL (M-QTL) were identified on 12 chromosomes, explaining 5 to 14% of phenotypic variation. Seven epistatic QTL (E-QTL) were identified for FLS and CCI and these could explain 9-25% of the phenotypic variation, but most of them did not have a main effect. Most of the QTL were reported for the first time. FN tests were conducted using grain flour samples from the 110 HWS wheat accessions grown in five environments. A total of 1,740 SNP markers were used to detect SNP-FN associations using both general linear model (GLM) and mixed linear model (MLM). A total of 13 QTL located in nine chromosomal regions were identified in both GLM and MLM approaches. These new QTL have the potential to increase the selection efficiency for wheat breeding, and can be further explored to identify candidate genes.

QTL Mapping in Crop Improvement

QTL Mapping in Crop Improvement PDF Author: Shabir Hussain Wani
Publisher: Academic Press
ISBN: 0323902855
Category : Technology & Engineering
Languages : en
Pages : 416

Get Book Here

Book Description
QTL Mapping in Crop Improvement: Present Progress and Future Perspectives presents advancements in QTL breeding for biotic and abiotic stresses and nutritional improvement in a range of crop plants. The book presents a roadmap for future breeding for resilience to various stresses and improvement in nutritional quality. Crops such as rice, wheat, maize, soybeans, common bean, and pigeon pea are the major staple crops consumed globally, hence fulfilling the nutritional requirements of global populations, particularly in the under-developed world, is extremely important. Sections cover the challenges facing maximized production of these crops, including diseases, insect damage, drought, heat, salinity and mineral toxicity. Covering globally important crops including maize, wheat, rice, barley, soybean, common bean and pigeon pea, this book will be an important reference for those working in agriculture and crop improvement. - Uses the latest molecular markers to identify QTLs/genes responsible for biotic and abiotic stress tolerance in plants - Includes multiple core crops for efficient comparison and translational learning - Provides a ready reference for improving quality traits through the use of the latest technologies

International Symposium on Wheat Yield Potential

International Symposium on Wheat Yield Potential PDF Author: Reynolds, M.P.
Publisher: CIMMYT
ISBN: 9706481443
Category : Wheat
Languages : en
Pages : 207

Get Book Here

Book Description


Physiological, Molecular, and Genetic Perspectives of Wheat Improvement

Physiological, Molecular, and Genetic Perspectives of Wheat Improvement PDF Author: Shabir H Wani
Publisher: Springer Nature
ISBN: 3030595773
Category : Technology & Engineering
Languages : en
Pages : 296

Get Book Here

Book Description
World population is growing at an alarming rate and may exceed 9.7 billion by 2050, whereas agricultural productivity has been negatively affected due to yield limiting factors such as biotic and abiotic stresses as a result of global climate change. Wheat is a staple crop for ~20% of the world population and its yield needs be augmented correspondingly in order to satisfy the demands of our increasing world population. “Green revolution”, the introduction of semi-dwarf, high yielding wheat varieties along with improved agronomic management practices, gave rise to a substantial increase in wheat production and self-sufficiency in developing countries that include Mexico, India and other south Asian countries. Since the late 1980’s, however, wheat yield is at a standoff with little fluctuation. The current trend is thus insufficient to meet the demands of an increasing world population. Therefore, while conventional breeding has had a great impact on wheat yield, with climate change becoming a reality, newer molecular breeding and management tools are needed to meet the goal of improving wheat yield for the future. With the advance in our understanding of the wheat genome and more importantly, the role of environmental interactions on productivity, the idea of genomic selection has been proposed to select for multi-genic quantitative traits early in the breeding cycle. Accordingly genomic selection may remodel wheat breeding with gain that is predicted to be 3 to 5 times that of crossbreeding. Phenomics (high-throughput phenotyping) is another fairly recent advancement using contemporary sensors for wheat germplasm screening and as a selection tool. Lastly, CRISPR/Cas9 ribonucleoprotein mediated genome editing technology has been successfully utilized for efficient and specific genome editing of hexaploid bread wheat. In summary, there has been exciting progresses in the development of non-GM wheat plants resistant to biotic and abiotic stress and/or wheat with improved nutritional quality. We believe it is important to highlight these novel research accomplishments for a broader audience, with the hope that our readers will ultimately adopt these powerful technologies for crops improvement in order to meet the demands of an expanding world population.

Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity

Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity PDF Author: Rakesh Singh Sengar
Publisher: Springer
ISBN: 9811069344
Category : Technology & Engineering
Languages : en
Pages : 285

Get Book Here

Book Description
As the world population is exploding and alongside fluctuations in climate is also prevalent, there is an increasing stress on the food requirements of the population. We have an urgent necessity to produce more food in the limited agricultural land. Further, to feed 7 billion people there is a requirement of high yielding crops, without harming environment and limiting the use of unnecessary pesticide and chemical fertilizers. Therefore it has become crucial to develop agri-bio-techniques which are environment friendly and also give high crop productivity. Many countries are evaluating the utility of biotechnology and its role in addressing problems of food security and poverty. Biotechnology is the application of scientific and engineering principles to the processing and production of materials by utilising biological agents. These agents are exploited to provide goods and services. Agricultural biotechnology encompasses a growing list of techniques that range from simple probes to determine a relevant gene from the complete genome to manipulating genes for a desired outcome. Many other popular methods used in the realm of agricultural technology are – gene integration, Marker-assisted breeding, Tissue culture, Gene profiling or association mapping, Metabolomics etc. The fundamental challenge facing the scientific community is how to devise innovative strategies that will bring all developed as well as developing countries into the “biological fold” and to do so in ways that will take full advantage of advances in the biological sciences to curb poverty, improve public health, and promote human development. This book contains information on eco-friendly techniques for high crop productivity and it is a myriad of different techniques and technology used to sustain productivity in crop plants. There are fewer books focusing on large-scale organic farming, molecular farming etc. Multidisciplinary research and literature is needed to deliver knowledge and products into the marketplace which fulfil these requirements. The present book is a collection of literature contributed by experts, scientists, professors, and researchers from around the world, it emphasizes work of concerned scientist and his choice of techniques used for enhancement of agricultural production. This book analyses the use of modern techniques to increase crop yields, production, and risk of hunger linked to socioeconomic scenarios.

Molecular Marker Technology for Crop Improvement

Molecular Marker Technology for Crop Improvement PDF Author: José Miguel Soriano
Publisher: MDPI
ISBN: 3039438638
Category : Science
Languages : en
Pages : 302

Get Book Here

Book Description
Since the 1980s, agriculture and plant breeding have changed with the development of molecular marker technology. In recent decades, different types of molecular markers have been used for different purposes: mapping, marker-assisted selection, characterization of genetic resources, etc. These have produced effective genotyping, but the results have been costly and time-consuming due to the small number of markers that could be tested simultaneously. Recent advances in molecular marker technologies such as the development of high-throughput genotyping platforms, genotyping by sequencing, and the release of the genome sequences of major crop plants have opened new possibilities for advancing crop improvement. This Special Issue collects 16 research studies, including the application of molecular markers in 11 crop species, from the generation of linkage maps and diversity studies to the application of marker-assisted selection and genomic prediction.