Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns Via Advanced Simulation

Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns Via Advanced Simulation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 13

Get Book Here

Book Description
The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns Via Advanced Simulation

Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns Via Advanced Simulation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 13

Get Book Here

Book Description
The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns Via Advanced Simulation

Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns Via Advanced Simulation PDF Author: Eric Wood
Publisher:
ISBN:
Category : Battery charging stations (Electric vehicles)
Languages : en
Pages : 13

Get Book Here

Book Description
The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns Via Advanced Simulation :.

Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns Via Advanced Simulation :. PDF Author: Eric Wood
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Progress in Modeling and Simulation of Batteries

Progress in Modeling and Simulation of Batteries PDF Author: John Turner
Publisher: SAE International
ISBN: 0768083664
Category : Technology & Engineering
Languages : en
Pages : 98

Get Book Here

Book Description
Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: • Thermal behavior and characteristics • Battery management system design and analysis • Moderately high-fidelity 3D capabilities • Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.

Measuring the Benefits of Public Chargers and Improving Infrastructure Deployments Using Advanced Simulation Tools

Measuring the Benefits of Public Chargers and Improving Infrastructure Deployments Using Advanced Simulation Tools PDF Author: Eric Wood
Publisher:
ISBN:
Category : Battery charging stations (Electric vehicles)
Languages : en
Pages : 12

Get Book Here

Book Description
With support from the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory developed BLAST-V--the Battery Lifetime Analysis and Simulation Tool for Vehicles. The addition of high-resolution spatial-temporal travel histories enables BLAST-V to investigate user-defined infrastructure rollouts of publically accessible charging infrastructure, as well as quantify impacts on vehicle and station owners in terms of improved vehicle utility and station throughput. This paper presents simulation outputs from BLAST-V that quantify the utility improvements of multiple distinct rollouts of publically available Level 2 electric vehicle supply equipment (EVSE) in the Seattle, Washington, metropolitan area. Publically available data on existing Level 2 EVSE are also used as an input to BLAST-V. The resulting vehicle utility is compared to a number of mock rollout scenarios. Discussion focuses on the estimated number of Level 2 stations necessary to substantially increase vehicle utility and how stations can be strategically sited to maximize their potential benefit to prospective electric vehicle owners.

Developing Charging Infrastructure and Technologies for Electric Vehicles

Developing Charging Infrastructure and Technologies for Electric Vehicles PDF Author: Alam, Mohammad Saad
Publisher: IGI Global
ISBN: 1799868605
Category : Technology & Engineering
Languages : en
Pages : 343

Get Book Here

Book Description
The increase in air pollution and vehicular emissions has led to the development of the renewable energy-based generation and electrification of transportation. Further, the electrification shift faces an enormous challenge due to limited driving range, long charging time, and high initial cost of deployment. Firstly, there has been a discussion on renewable energy such as how wind power and solar power can be generated by wind turbines and photovoltaics, respectively, while these are intermittent in nature. The combination of these renewable energy resources with available power generation system will make electric vehicle (EV) charging sustainable and viable after the payback period. Recently, there has also been a significant discussion focused on various EV charging types and the level of power for charging to minimize the charging time. By focusing on both sustainable and renewable energy, as well as charging infrastructures and technologies, the future for EV can be explored. Developing Charging Infrastructure and Technologies for Electric Vehicles reviews and discusses the state of the art in electric vehicle charging technologies, their applications, economic, environmental, and social impact, and integration with renewable energy. This book captures the state of the art in electric vehicle charging infrastructure deployment, their applications, architectures, and relevant technologies. In addition, this book identifies potential research directions and technologies that facilitate insights on EV charging in various charging places such as smart home charging, parking EV charging, and charging stations. This book will be essential for power system architects, mechanics, electrical engineers, practitioners, developers, practitioners, researchers, academicians, and students interested in the problems and solutions to the state-of-the-art status of electric vehicles.

Plug In Electric Vehicles in Smart Grids

Plug In Electric Vehicles in Smart Grids PDF Author: Sumedha Rajakaruna
Publisher: Springer
ISBN: 9812873171
Category : Technology & Engineering
Languages : en
Pages : 329

Get Book Here

Book Description
This book covers the recent research advancements in the area of charging strategies that can be employed to accommodate the anticipated high deployment of Plug-in Electric Vehicles (PEVs) in smart grids. Recent literature has focused on various potential issues of uncoordinated charging of PEVs and methods of overcoming such challenges. After an introduction to charging coordination paradigms of PEVs, this book will present various ways the coordinated control can be accomplished. These innovative approaches include hierarchical coordinated control, model predictive control, optimal control strategies to minimize load variance, smart PEV load management based on load forecasting, integrating renewable energy sources such as photovoltaic arrays to supplement grid power, using wireless communication networks to coordinate the charging load of a smart grid and using market price of electricity and customers payment to coordinate the charging load. Hence, this book proposes many new strategies proposed recently by the researchers around the world to address the issues related to coordination of charging load of PEVs in a future smart grid.

Plug-in Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables

Plug-in Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables PDF Author: Mike Simpson
Publisher:
ISBN:
Category : Battery chargers
Languages : en
Pages : 8

Get Book Here

Book Description
The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose "range anxiety" in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

Plug-in Electric Vehicle Grid Integration

Plug-in Electric Vehicle Grid Integration PDF Author: Islam Safak Bayram
Publisher: Artech House
ISBN: 1630814733
Category : Technology & Engineering
Languages : en
Pages : 289

Get Book Here

Book Description
This authoritative new resource provides a comprehensive introduction to plug-in electric vehicles (PEVs), including critical discussions on energy storage and converter technology. The architecture and models for sustainable charging infrastructures and capacity planning of small scale fast charging stations are presented. This book considers PEVs as mobile storage units and explains how PEVS can provide services to the grid. Enabling technologies are explored, including energy storage, converter, and charger technologies for home and park charging. The adoption of EV is discussed and examples are given from the individual battery level to the city level. This book provides guidance on how to build and design sustainable transportation systems. Optimal arrival rates, optimal service rates, facility location problems, load balancing, and demand forecasts are covered in this book. Time-saving MATLAB code and background tables are included in this resource to help engineers with their projects in the field.

Advanced Concepts and Technologies for Electric Vehicles

Advanced Concepts and Technologies for Electric Vehicles PDF Author: Akshay Kumar Rathore
Publisher: CRC Press
ISBN: 1000925889
Category : Technology & Engineering
Languages : en
Pages : 255

Get Book Here

Book Description
This book explains the basic and advanced technology behind the Power Electronics Converters for EV charging, and their significant developments, and introduces the Grid Impact issues that underpin the grid integration of electric vehicles. Advanced Concepts and Technologies for Electric Vehicles reviews state-of-the-art and new configurations and concepts of more electric vehicles and EV charging, mitigating the impact of EV charging on the power grid, and technical considerations of EV charging infrastructures. The book considers the environmental benefits and advantages of electric vehicles and their component devices. It includes case studies of different power electronic converters used for charging EVs. It offers a review of PFC-based AC chargers, WBG-based chargers, and Wireless chargers. The authors also explore multistage charging systems and their possible implementations. The book also examines the challenges and opportunities posed by the progressive integration of electric drive vehicles on the power grid and reported solutions for their mitigation. The book is intended for professionals, researchers, and engineers in the electric vehicle industry as well as advanced students in electrical engineering who benefit from this comprehensive coverage of electric vehicle technology. Readers can get an in-depth insight into the technology deployment in EV transportation and utilize that knowledge to develop novel ideas in the EV area.