Pulse Formation and Frequency Conversion in Dispersion-engineered Nonlinear Waveguides and Resonators

Pulse Formation and Frequency Conversion in Dispersion-engineered Nonlinear Waveguides and Resonators PDF Author: Marc P Jankowski
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Recent advances in nonlinear photonics have enabled a new class of broadband ultra-stable light sources known as optical frequency combs. These light sources have given rise to an array of new optical devices and systems, spanning applications such as spectroscopy, astronomy, remote sensing, frequency synthesis, attoscience, telecommunications, and optical clockwork. At this time, there are a number of unsolved problems within the field. Optical frequency combs are often constrained to wavelengths within the near-infrared (NIR) due to the limited variety of in mature laser gain media and host glasses, and many applications such as spectroscopy, sensing, and attoscience would benefit from the development of optical frequency combs at longer wavelength ranges such as the mid-infrared (MIR). Furthermore, the generation and stabilization of frequency combs often requires rather complicated nonlinear optical systems, which have prevented these light sources from being used outside of dedicated optics labs. This dissertation considers new approaches to frequency comb generation based on recently discovered nonlinear dynamical processes that occur in quasi-phasematched (QPM) devices with quadratic nonlinearities. A recurring theme is that the interplay of nonlinear optical effects, such as optical parametric amplification and self-phase modulation, with linear optical effects, such as dispersion, can produce qualitatively new dynamical regimes. In many cases, these dynamical regimes exhibit favorable features that potentially solve the problems discussed above. The first half of this thesis considers the pulse formation mechanisms present in optical parametric oscillators (OPOs), and discusses new operating regimes that enable the generation of MIR combs with substantially more bandwidth than the NIR comb used to drive the OPO. These devices can produce few-cycle pulses with conversion efficiencies exceeding 50% while also preserving the coherence of the frequency comb. The latter portion of this thesis studies the dynamics of femtosecond pulses in nanophotonic waveguides. Here, the geometric dispersion associated with sub-wavelength confinement be used to achieve long interaction lengths with femtosecond pulses. Using these effects we are able to achieve saturated SHG with femtojoules of pulse energy, where state-of-the-art devices previously used picojoules. In the limit of phase-mismatched SHG driven with picojoules of pulse energy we observe the formation of a coherent multi-octave supercontinuum comprised of multiple spectrally broadened harmonics. The mechanisms of spectral broadening in this system are shown to be completely unique to dispersion-engineered nanophotonic QPM devices and exhibit a number of desirable features including i) low power requirements, ii) fewer decoherence mechanisms than traditional approaches, and iii) the formation of carrier-envelope-offset beatnotes in the regions of spectral overlap between the harmonics.

Pulse Formation and Frequency Conversion in Dispersion-engineered Nonlinear Waveguides and Resonators

Pulse Formation and Frequency Conversion in Dispersion-engineered Nonlinear Waveguides and Resonators PDF Author: Marc P Jankowski
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Recent advances in nonlinear photonics have enabled a new class of broadband ultra-stable light sources known as optical frequency combs. These light sources have given rise to an array of new optical devices and systems, spanning applications such as spectroscopy, astronomy, remote sensing, frequency synthesis, attoscience, telecommunications, and optical clockwork. At this time, there are a number of unsolved problems within the field. Optical frequency combs are often constrained to wavelengths within the near-infrared (NIR) due to the limited variety of in mature laser gain media and host glasses, and many applications such as spectroscopy, sensing, and attoscience would benefit from the development of optical frequency combs at longer wavelength ranges such as the mid-infrared (MIR). Furthermore, the generation and stabilization of frequency combs often requires rather complicated nonlinear optical systems, which have prevented these light sources from being used outside of dedicated optics labs. This dissertation considers new approaches to frequency comb generation based on recently discovered nonlinear dynamical processes that occur in quasi-phasematched (QPM) devices with quadratic nonlinearities. A recurring theme is that the interplay of nonlinear optical effects, such as optical parametric amplification and self-phase modulation, with linear optical effects, such as dispersion, can produce qualitatively new dynamical regimes. In many cases, these dynamical regimes exhibit favorable features that potentially solve the problems discussed above. The first half of this thesis considers the pulse formation mechanisms present in optical parametric oscillators (OPOs), and discusses new operating regimes that enable the generation of MIR combs with substantially more bandwidth than the NIR comb used to drive the OPO. These devices can produce few-cycle pulses with conversion efficiencies exceeding 50% while also preserving the coherence of the frequency comb. The latter portion of this thesis studies the dynamics of femtosecond pulses in nanophotonic waveguides. Here, the geometric dispersion associated with sub-wavelength confinement be used to achieve long interaction lengths with femtosecond pulses. Using these effects we are able to achieve saturated SHG with femtojoules of pulse energy, where state-of-the-art devices previously used picojoules. In the limit of phase-mismatched SHG driven with picojoules of pulse energy we observe the formation of a coherent multi-octave supercontinuum comprised of multiple spectrally broadened harmonics. The mechanisms of spectral broadening in this system are shown to be completely unique to dispersion-engineered nanophotonic QPM devices and exhibit a number of desirable features including i) low power requirements, ii) fewer decoherence mechanisms than traditional approaches, and iii) the formation of carrier-envelope-offset beatnotes in the regions of spectral overlap between the harmonics.

Dispersion Engineering Silicon Nitride Waveguides for Broadband Nonlinear Frequency Conversion

Dispersion Engineering Silicon Nitride Waveguides for Broadband Nonlinear Frequency Conversion PDF Author: Jörn Philipp Epping
Publisher:
ISBN: 9789036539395
Category :
Languages : en
Pages : 100

Get Book Here

Book Description


Nonlinear Meta-Optics

Nonlinear Meta-Optics PDF Author: Costantino De Angelis
Publisher: CRC Press
ISBN: 1351269747
Category : Technology & Engineering
Languages : en
Pages : 256

Get Book Here

Book Description
This book addresses fabrication as well as characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects. The visible range as well as near and far infrared spectral region will be considered with a view to different envisaged applications. The book covers the current key challenges of the research in the area, including: exploiting new material platforms, fully extending the device operation into the nonlinear regime, adding re-configurability to the envisaged devices and proposing new modeling tools to help in conceiving new functionalities. • Explores several topics in the field of semiconductor nonlinear nanophotonics, including fabrication, characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects • Describes the research challenges in the field of optical metasurfaces in the nonlinear regime • Reviews the use and achievements of all-dielectric nanoantennas for strengthening the nonlinear optical response • Describes both theoretical and experimental aspects of photonic devices based on semiconductor optical nanoantennas and metasurfaces • Gathers contributions from several leading groups in this research field to provide a thorough and complete overview of the current state of the art in the field of semiconductor nonlinear nanophotonics Costantino De Angelis has been full professor of electromagnetic fields at the University of Brescia since 1998. He is an OSA Fellow and has been responsible for several university research contracts in the last 20 years within Europe, the United States, and Italy. His technical interests are in optical antennas and nanophotonics. He is the author of over 150 peer-reviewed scientific journal articles. Giuseppe Leo has been a full professor in physics at Paris Diderot University since 2004, and in charge of the nonlinear devices group of MPQ Laboratory since 2006. His research areas include nonlinear optics, micro- and nano-photonics, and optoelectronics, with a focus on AlGaAs platform. He has coordinated several research programs and coauthored 100 peer-reviewed journal articles, 200 conference papers, 10 book chapters and also has four patents. Dragomir Neshev is a professor in physics and the leader of the experimental photonics group in the Nonlinear Physics Centre at Australian National University (ANU). His activities span over several branches of optics, including nonlinear periodic structures, singular optics, plasmonics, and photonic metamaterials. He has coauthored 200 publications in international peer-reviewed scientific journals.

Optics Letters

Optics Letters PDF Author:
Publisher:
ISBN:
Category : Optics
Languages : en
Pages : 760

Get Book Here

Book Description


Crystal Nonlinear Optics

Crystal Nonlinear Optics PDF Author: Arlee Smith
Publisher:
ISBN: 9780692056783
Category :
Languages : en
Pages : 782

Get Book Here

Book Description
Advanced textbook on crystal nonlinear optics.

Fundamentals of Optical Waveguides

Fundamentals of Optical Waveguides PDF Author: Katsunari Okamoto
Publisher: Elsevier
ISBN: 0080455069
Category : Technology & Engineering
Languages : en
Pages : 578

Get Book Here

Book Description
Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)

The Supercontinuum Laser Source

The Supercontinuum Laser Source PDF Author: Robert R. Alfano
Publisher: Springer Science & Business Media
ISBN: 0387250972
Category : Science
Languages : en
Pages : 552

Get Book Here

Book Description
This new edition of a classic in the field has been expanded and enriched with new content and updated references. The book covers the fundamental principles and surveys research of current thinkers and experts in the field with updated references of the key breakthroughs over the past decade and a half.

Nonlinear Photonics

Nonlinear Photonics PDF Author: Hyatt M. Gibbs
Publisher: Springer Science & Business Media
ISBN: 3642754384
Category : Science
Languages : en
Pages : 218

Get Book Here

Book Description
Nonlinear photonics is the name given to the use of nonlinear optical devices for the generation, communication, processing, or analysis of information. This book is a progress report on research into practical applications of such devices. At present, modulation, switching, routing, decision-making, and detection in photonic systems are all done with electronics and linear optoelectronic devices. However, this may soon change, as nonlinear optical devices, e.g. picosecond samplers and switches, begin to complement optoelectonic devices. The authors succinctly summarize past accomplishments in this field and point to hopes for the future, making this an ideal book for newcomers or seasoned researchers wanting to design and perfect nonlinear optical devices and to identify applications in photonic systems.

Advanced Nanomaterials and Their Applications

Advanced Nanomaterials and Their Applications PDF Author: N. Madhusudhana Rao
Publisher: Springer Nature
ISBN: 981991616X
Category : Technology & Engineering
Languages : en
Pages : 161

Get Book Here

Book Description
This book comprises select proceedings of the International Conference on Advanced Nanomaterials and Applications (ICANA 2022) and presents recent developments in the fields of nanoscale sciences. The topics covered in this book include energy storage and conversion, bio- and healthcare materials, sensors and actuators, functional materials, optical materials, and computational and simulation methods. This book is useful for researchers and professionals working in the various fields of nanotechnology.

Electrical & Electronics Abstracts

Electrical & Electronics Abstracts PDF Author:
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 1948

Get Book Here

Book Description