Author: Girdhar K. Pandey
Publisher: Springer Nature
ISBN: 3030487334
Category : Science
Languages : en
Pages : 393
Book Description
The regulation of the phosphorylation/dephosphorylation process, resulting in “cellular switches” that monitor normal plant physiology, growth and development, has immense potential in crop systems. With much of the information in the nascent stages, coming largely from Arabidopsis and rice particularly, the use of cell biology, genetic screens, biochemical approaches aided by an omics approach should help unravel the detail functional information available about signaling pathways in plants. The regulation could be exploited to develop crop varieties better equipped to handle changing environments and enhance agricultural productivity. In the post-genomic era, one of the major challenges is investigation and understanding of multiple genes and gene families regulating a particular physiological and developmental aspect of plant life cycle. One of the important physiological processes is regulation of stress response, which leads to adaptation or adjustment in response to adverse stimuli. With the holistic understanding of the signaling pathways involving phosphatases, one gene family or multiple genes or gene families, plant biologist can lay a foundation for designing and generating future crops, which can withstand the higher degree of environmental stresses. Especially abiotic stresses, which are the major cause of crop loss throughout the world without losing crop yield and productivity. This book incorporates the contributions from leading plant biologists in the field of stress-mediated dephosphorylation by phosphatases as an important task to elucidate the aspects of stress signaling by functional genomic approaches.
Protein Phosphatases and Stress Management in Plants
Author: Girdhar K. Pandey
Publisher: Springer Nature
ISBN: 3030487334
Category : Science
Languages : en
Pages : 393
Book Description
The regulation of the phosphorylation/dephosphorylation process, resulting in “cellular switches” that monitor normal plant physiology, growth and development, has immense potential in crop systems. With much of the information in the nascent stages, coming largely from Arabidopsis and rice particularly, the use of cell biology, genetic screens, biochemical approaches aided by an omics approach should help unravel the detail functional information available about signaling pathways in plants. The regulation could be exploited to develop crop varieties better equipped to handle changing environments and enhance agricultural productivity. In the post-genomic era, one of the major challenges is investigation and understanding of multiple genes and gene families regulating a particular physiological and developmental aspect of plant life cycle. One of the important physiological processes is regulation of stress response, which leads to adaptation or adjustment in response to adverse stimuli. With the holistic understanding of the signaling pathways involving phosphatases, one gene family or multiple genes or gene families, plant biologist can lay a foundation for designing and generating future crops, which can withstand the higher degree of environmental stresses. Especially abiotic stresses, which are the major cause of crop loss throughout the world without losing crop yield and productivity. This book incorporates the contributions from leading plant biologists in the field of stress-mediated dephosphorylation by phosphatases as an important task to elucidate the aspects of stress signaling by functional genomic approaches.
Publisher: Springer Nature
ISBN: 3030487334
Category : Science
Languages : en
Pages : 393
Book Description
The regulation of the phosphorylation/dephosphorylation process, resulting in “cellular switches” that monitor normal plant physiology, growth and development, has immense potential in crop systems. With much of the information in the nascent stages, coming largely from Arabidopsis and rice particularly, the use of cell biology, genetic screens, biochemical approaches aided by an omics approach should help unravel the detail functional information available about signaling pathways in plants. The regulation could be exploited to develop crop varieties better equipped to handle changing environments and enhance agricultural productivity. In the post-genomic era, one of the major challenges is investigation and understanding of multiple genes and gene families regulating a particular physiological and developmental aspect of plant life cycle. One of the important physiological processes is regulation of stress response, which leads to adaptation or adjustment in response to adverse stimuli. With the holistic understanding of the signaling pathways involving phosphatases, one gene family or multiple genes or gene families, plant biologist can lay a foundation for designing and generating future crops, which can withstand the higher degree of environmental stresses. Especially abiotic stresses, which are the major cause of crop loss throughout the world without losing crop yield and productivity. This book incorporates the contributions from leading plant biologists in the field of stress-mediated dephosphorylation by phosphatases as an important task to elucidate the aspects of stress signaling by functional genomic approaches.
Protein Kinases and Stress Signaling in Plants
Author: Girdhar K. Pandey
Publisher: John Wiley & Sons
ISBN: 1119541565
Category : Science
Languages : en
Pages : 560
Book Description
A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.
Publisher: John Wiley & Sons
ISBN: 1119541565
Category : Science
Languages : en
Pages : 560
Book Description
A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.
Global Climate Change and Plant Stress Management
Author: Mohammad Wahid Ansari
Publisher: John Wiley & Sons
ISBN: 1119858526
Category : Science
Languages : en
Pages : 468
Book Description
Understand the impact of climate change on plant growth with this timely introduction Climate change has had unprecedented consequences for plant metabolism and plant growth. In botany, adverse effects of this kind are called plant stress conditions; in recent years, the plant stress conditions generated by climate change have been the subject of considerable study. Plants have exhibited increased photosynthesis, increased water requirements, and more. There is an urgent need to understand and address these changes as we adapt to drastic changes in the global climate. Global Climate Change and Plant Stress Management presents a comprehensive guide to the effects of global climate change on plants and plant metabolism. It introduces and describes each climate change-related condition and its components, offering a detailed analysis of the resulting stress conditions, the environmental factors which ameliorate or exacerbate them, and possible solutions. The result is a thorough, rigorous introduction to this critical subject for the future of our biome. Readers will also find: Analysis of global climate change impact on various agricultural practices Socio-economic consequences of climate change and plant stress conditions, and possible solutions Strategies for sustainable agriculture Global Climate Change and Plant Stress Management is essential for researchers, scientists, and industry professionals working in the life sciences, as well as for advanced graduate students.
Publisher: John Wiley & Sons
ISBN: 1119858526
Category : Science
Languages : en
Pages : 468
Book Description
Understand the impact of climate change on plant growth with this timely introduction Climate change has had unprecedented consequences for plant metabolism and plant growth. In botany, adverse effects of this kind are called plant stress conditions; in recent years, the plant stress conditions generated by climate change have been the subject of considerable study. Plants have exhibited increased photosynthesis, increased water requirements, and more. There is an urgent need to understand and address these changes as we adapt to drastic changes in the global climate. Global Climate Change and Plant Stress Management presents a comprehensive guide to the effects of global climate change on plants and plant metabolism. It introduces and describes each climate change-related condition and its components, offering a detailed analysis of the resulting stress conditions, the environmental factors which ameliorate or exacerbate them, and possible solutions. The result is a thorough, rigorous introduction to this critical subject for the future of our biome. Readers will also find: Analysis of global climate change impact on various agricultural practices Socio-economic consequences of climate change and plant stress conditions, and possible solutions Strategies for sustainable agriculture Global Climate Change and Plant Stress Management is essential for researchers, scientists, and industry professionals working in the life sciences, as well as for advanced graduate students.
Protein Kinases and Stress Signaling in Plants
Author: Girdhar K. Pandey
Publisher: John Wiley & Sons
ISBN: 1119541514
Category : Science
Languages : en
Pages : 560
Book Description
A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.
Publisher: John Wiley & Sons
ISBN: 1119541514
Category : Science
Languages : en
Pages : 560
Book Description
A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.
Regulation of Downstream Targets
Author: Rossen Donev
Publisher: Elsevier
ISBN: 0443131821
Category : Science
Languages : en
Pages : 456
Book Description
Regulation of Downstream Targets, Volume 134 in the Advances in Protein Chemistry and Structural Biology series, presents interesting chapters on topics such as Transcriptional regulatory mechanisms and signaling networks in Viral Infections, Identification of potential key genes associated with pathogenesis and prognosis of endometrial cancer based on Integrated Bioinformatics Approaches, Differential regulation of genes in stage IB pancreatic cancer associated with increased risk of metastasis, AMPK-related LKB1-downstream targets, A compilation of bioinformatic approaches to identify novel downstream targets for the detection and prophylaxis of cancer, Protein phosphatases and their targets: Critical determinants of signaling pathway in plants, and more. Other sections cover Calcium decoders and their targets: The holy alliance that regulate cellular responses, Importin alpha family NAAT/IBB domain: functions of a multi-faceted long chameleon sequence, Aurora Kinase A and related downstream molecules: A Potential Network for Cancer Therapy, Emerging Role of Heat Shock Proteins in Cardiovascular Diseases, Function, Structure, Evolution, Regulation and Drug Target Relevance of Arylalkylamine N-acetyltransferase, and Analysis of signaling cascades from myeloma cells treated with pristimerin. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Advances in Protein Chemistry and Structural Biology series - Updated release includes the latest information on the Regulation of Downstream Targets
Publisher: Elsevier
ISBN: 0443131821
Category : Science
Languages : en
Pages : 456
Book Description
Regulation of Downstream Targets, Volume 134 in the Advances in Protein Chemistry and Structural Biology series, presents interesting chapters on topics such as Transcriptional regulatory mechanisms and signaling networks in Viral Infections, Identification of potential key genes associated with pathogenesis and prognosis of endometrial cancer based on Integrated Bioinformatics Approaches, Differential regulation of genes in stage IB pancreatic cancer associated with increased risk of metastasis, AMPK-related LKB1-downstream targets, A compilation of bioinformatic approaches to identify novel downstream targets for the detection and prophylaxis of cancer, Protein phosphatases and their targets: Critical determinants of signaling pathway in plants, and more. Other sections cover Calcium decoders and their targets: The holy alliance that regulate cellular responses, Importin alpha family NAAT/IBB domain: functions of a multi-faceted long chameleon sequence, Aurora Kinase A and related downstream molecules: A Potential Network for Cancer Therapy, Emerging Role of Heat Shock Proteins in Cardiovascular Diseases, Function, Structure, Evolution, Regulation and Drug Target Relevance of Arylalkylamine N-acetyltransferase, and Analysis of signaling cascades from myeloma cells treated with pristimerin. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Advances in Protein Chemistry and Structural Biology series - Updated release includes the latest information on the Regulation of Downstream Targets
Drought Stress Tolerance in Plants, Vol 2
Author: Mohammad Anwar Hossain
Publisher: Springer
ISBN: 3319324233
Category : Technology & Engineering
Languages : en
Pages : 616
Book Description
Drought is one of the most severe constraints to crop productivity worldwide, and thus it has become a major concern for global food security. Due to an increasing world population, droughts could lead to serious food shortages by 2050. The situation may worsen due to predicated climatic changes that may increase the frequency, duration and severity of droughts. Hence, there is an urgent need to improve our understanding of the complex mechanisms associated with drought tolerance and to develop modern crop varieties that are more resilient to drought. Identification of the genes responsible for drought tolerance in plants will contribute to our understanding of the molecular mechanisms that could enable crop plants to respond to drought. The discovery of novel drought related genes, the analysis of their expression patterns in response to drought, and determination of the functions these genes play in drought adaptation will provide a base to develop effective strategies to enhance the drought tolerance of crop plants. Plant breeding efforts to increase crop yields in dry environments have been slow to date mainly due to our poor understanding of the molecular and genetic mechanisms involved in how plants respond to drought. In addition, when it comes to combining favourable alleles, there are practical obstacles to developing superior high yielding genotypes fit for drought prone environments. Drought Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives combines novel topical findings, regarding the major molecular and genetic events associated with drought tolerance, with contemporary crop improvement approaches. This volume is unique as it makes available for its readers not only extensive reports of existing facts and data, but also practical knowledge and overviews of state-of-the-art technologies, across the biological fields, from plant breeding using classical and molecular genetic information, to the modern omic technologies, that are now being used in drought tolerance research to breed drought-related traits into modern crop varieties. This book is useful for teachers and researchers in the fields of plant breeding, molecular biology and biotechnology.
Publisher: Springer
ISBN: 3319324233
Category : Technology & Engineering
Languages : en
Pages : 616
Book Description
Drought is one of the most severe constraints to crop productivity worldwide, and thus it has become a major concern for global food security. Due to an increasing world population, droughts could lead to serious food shortages by 2050. The situation may worsen due to predicated climatic changes that may increase the frequency, duration and severity of droughts. Hence, there is an urgent need to improve our understanding of the complex mechanisms associated with drought tolerance and to develop modern crop varieties that are more resilient to drought. Identification of the genes responsible for drought tolerance in plants will contribute to our understanding of the molecular mechanisms that could enable crop plants to respond to drought. The discovery of novel drought related genes, the analysis of their expression patterns in response to drought, and determination of the functions these genes play in drought adaptation will provide a base to develop effective strategies to enhance the drought tolerance of crop plants. Plant breeding efforts to increase crop yields in dry environments have been slow to date mainly due to our poor understanding of the molecular and genetic mechanisms involved in how plants respond to drought. In addition, when it comes to combining favourable alleles, there are practical obstacles to developing superior high yielding genotypes fit for drought prone environments. Drought Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives combines novel topical findings, regarding the major molecular and genetic events associated with drought tolerance, with contemporary crop improvement approaches. This volume is unique as it makes available for its readers not only extensive reports of existing facts and data, but also practical knowledge and overviews of state-of-the-art technologies, across the biological fields, from plant breeding using classical and molecular genetic information, to the modern omic technologies, that are now being used in drought tolerance research to breed drought-related traits into modern crop varieties. This book is useful for teachers and researchers in the fields of plant breeding, molecular biology and biotechnology.
Plant Nutrition and Food Security in the Era of Climate Change
Author: Vinay Kumar
Publisher: Academic Press
ISBN: 0128230932
Category : Science
Languages : en
Pages : 576
Book Description
Plant nutrients are the vital elements essential for plant growth and survival, with key roles in adapting to challenging environments. Each nutrient, whether required in relatively large (macronutrients) or minute concentrations (micronutrients) plays a unique role in plant life cycle. Both the insufficient and surplus concentrations of these nutrients may render negative impacts on plant growth and development and therefore their homeostasis is considered critical for optimal plant growth and yield. Plant Nutrition and Food Security in the Era of Climate Change comprehensively reviews all critical plant nutrients. Chapters include topics such as: biological roles, uptake and transport of vital nutrients in plants; an in-depth review of the roles of potassium, calcium, magnesium and trace element; molecular breeding approaches for enhanced plant nutrients; and exploring the rhizosphere microbiome for enhance nutrient availability. Written by leading experts in the field of plant biology, this is an essential read for researchers and scientists interested in plant science, agronomy, food security and environmental science. - A comprehensive review of all the important plant nutrients - Discusses plant homeostasis under natural and changing environments - Introduces novel approaches and state-of-the-art tool for enhancing the levels of targeted nutrients within plant tissues
Publisher: Academic Press
ISBN: 0128230932
Category : Science
Languages : en
Pages : 576
Book Description
Plant nutrients are the vital elements essential for plant growth and survival, with key roles in adapting to challenging environments. Each nutrient, whether required in relatively large (macronutrients) or minute concentrations (micronutrients) plays a unique role in plant life cycle. Both the insufficient and surplus concentrations of these nutrients may render negative impacts on plant growth and development and therefore their homeostasis is considered critical for optimal plant growth and yield. Plant Nutrition and Food Security in the Era of Climate Change comprehensively reviews all critical plant nutrients. Chapters include topics such as: biological roles, uptake and transport of vital nutrients in plants; an in-depth review of the roles of potassium, calcium, magnesium and trace element; molecular breeding approaches for enhanced plant nutrients; and exploring the rhizosphere microbiome for enhance nutrient availability. Written by leading experts in the field of plant biology, this is an essential read for researchers and scientists interested in plant science, agronomy, food security and environmental science. - A comprehensive review of all the important plant nutrients - Discusses plant homeostasis under natural and changing environments - Introduces novel approaches and state-of-the-art tool for enhancing the levels of targeted nutrients within plant tissues
Abiotic Stress Signaling in Plants: Functional Genomic Intervention, Volume II
Author: Girdhar Kumar Pandey
Publisher: Frontiers Media SA
ISBN: 2832543979
Category : Science
Languages : en
Pages : 286
Book Description
This Research Topic is part of the Abiotic Stress Signaling in Plants: Functional Genomic Intervention series: Abiotic Stress Signaling in Plants: Functional Genomic Intervention Abiotic stresses such as high temperature, low-temperature, drought and salinity limit crop productivity worldwide. Understanding plant responses to these stresses is essential for rational engineering of crop plants. In Arabidopsis, the signal transduction pathways for abiotic stresses, light, several phytohormones and pathogenesis have been elucidated. A significant portion of plant genomes (most studies are Arabidopsis and rice genome) encodes for proteins involves in signaling such as receptor, sensors, kinases, phosphatases, transcription factors and transporters/channels. Despite decades of physiological and molecular effort, knowledge pertaining to how plants sense and transduce low and high temperature, low-water availability (drought), water-submergence and salinity signals is still a major question before plant biologist. One major constraint hampering our understanding of these signal transduction processes in plants has been the lack or slow pace of application of molecular genomic and genetics knowledge in the form of gene function.
Publisher: Frontiers Media SA
ISBN: 2832543979
Category : Science
Languages : en
Pages : 286
Book Description
This Research Topic is part of the Abiotic Stress Signaling in Plants: Functional Genomic Intervention series: Abiotic Stress Signaling in Plants: Functional Genomic Intervention Abiotic stresses such as high temperature, low-temperature, drought and salinity limit crop productivity worldwide. Understanding plant responses to these stresses is essential for rational engineering of crop plants. In Arabidopsis, the signal transduction pathways for abiotic stresses, light, several phytohormones and pathogenesis have been elucidated. A significant portion of plant genomes (most studies are Arabidopsis and rice genome) encodes for proteins involves in signaling such as receptor, sensors, kinases, phosphatases, transcription factors and transporters/channels. Despite decades of physiological and molecular effort, knowledge pertaining to how plants sense and transduce low and high temperature, low-water availability (drought), water-submergence and salinity signals is still a major question before plant biologist. One major constraint hampering our understanding of these signal transduction processes in plants has been the lack or slow pace of application of molecular genomic and genetics knowledge in the form of gene function.
Plant Life under Changing Environment
Author: Durgesh Kumar Tripathi
Publisher: Academic Press
ISBN: 0128182059
Category : Science
Languages : en
Pages : 1014
Book Description
Plant Life under Changing Environment: Responses and Management presents the latest insights, reflecting the significant progress that has been made in understanding plant responses to various changing environmental impacts, as well as strategies for alleviating their adverse effects, including abiotic stresses. Growing from a focus on plants and their ability to respond, adapt, and survive, Plant Life under Changing Environment: Responses and Management addresses options for mitigating those responses to ensure maximum health and growth. Researchers and advanced students in environmental sciences, plant ecophysiology, biochemistry, molecular biology, nano-pollution climate change, and soil pollution will find this an important foundational resource. - Covers both responses and adaptation of plants to altered environmental states - Illustrates the current impact of climate change on plant productivity, along with mitigation strategies - Includes transcriptomic, proteomic, metabolomic and ionomic approaches
Publisher: Academic Press
ISBN: 0128182059
Category : Science
Languages : en
Pages : 1014
Book Description
Plant Life under Changing Environment: Responses and Management presents the latest insights, reflecting the significant progress that has been made in understanding plant responses to various changing environmental impacts, as well as strategies for alleviating their adverse effects, including abiotic stresses. Growing from a focus on plants and their ability to respond, adapt, and survive, Plant Life under Changing Environment: Responses and Management addresses options for mitigating those responses to ensure maximum health and growth. Researchers and advanced students in environmental sciences, plant ecophysiology, biochemistry, molecular biology, nano-pollution climate change, and soil pollution will find this an important foundational resource. - Covers both responses and adaptation of plants to altered environmental states - Illustrates the current impact of climate change on plant productivity, along with mitigation strategies - Includes transcriptomic, proteomic, metabolomic and ionomic approaches
Plant Proteomic Research 2.0
Author: Setsuko Komatsu
Publisher: MDPI
ISBN: 3039210629
Category : Science
Languages : en
Pages : 596
Book Description
Advancements in high-throughput “Omics” techniques have revolutionized plant molecular biology research. Proteomics offers one of the best options for the functional analysis of translated regions of the genome, generating a wealth of detailed information regarding the intrinsic mechanisms of plant stress responses. Various proteomic approaches are being exploited extensively for elucidating master regulator proteins which play key roles in stress perception and signaling, and these approaches largely involve gel-based and gel-free techniques, including both label-based and label-free protein quantification. Furthermore, post-translational modifications, subcellular localization, and protein–protein interactions provide deeper insight into protein molecular function. Their diverse applications contribute to the revelation of new insights into plant molecular responses to various biotic and abiotic stressors.
Publisher: MDPI
ISBN: 3039210629
Category : Science
Languages : en
Pages : 596
Book Description
Advancements in high-throughput “Omics” techniques have revolutionized plant molecular biology research. Proteomics offers one of the best options for the functional analysis of translated regions of the genome, generating a wealth of detailed information regarding the intrinsic mechanisms of plant stress responses. Various proteomic approaches are being exploited extensively for elucidating master regulator proteins which play key roles in stress perception and signaling, and these approaches largely involve gel-based and gel-free techniques, including both label-based and label-free protein quantification. Furthermore, post-translational modifications, subcellular localization, and protein–protein interactions provide deeper insight into protein molecular function. Their diverse applications contribute to the revelation of new insights into plant molecular responses to various biotic and abiotic stressors.