Proppant Transport in Complex Fracture Networks

Proppant Transport in Complex Fracture Networks PDF Author: Christopher Allen Johnson Blyton
Publisher:
ISBN:
Category :
Languages : en
Pages : 320

Get Book Here

Book Description
Current hydraulic fracturing practice in unconventional resource development typically involves multiple fracturing stages, each consisting of the simultaneous creation of several fractures from a horizontal well. A large mass of proppant, often millions of pounds per well, is injected with the fluid to provide post-closure conductivity. Despite the large quantity of proppant used and its critical importance to well productivity, simple models are often applied to determine its placement in fractures. Propped or effective fracture lengths indicated by modeling may be 100 to 300% larger than the lengths inferred from production data. A common assumption is that the average proppant velocity due to pressure driven flow is equal to the average carrier fluid velocity, while the settling velocity calculation uses Stokes’ law. To more accurately determine the placement of proppant in a fracture, it is necessary to rigorously account for many effects not included in the above assumptions. In this study, the motion of particles flowing with a fluid between fracture walls has been simulated using a coupled computational fluid dynamics and discrete element method (CFD-DEM) that rigorously accounts for the both aspects of the problem. These simulations determine individual particle trajectories as particle to particle and particle to wall collisions occur and include the effect of fluid flow. The results show that the proppant concentration and the ratio of proppant diameter to fracture width govern the relative velocity of proppant and fluid. Proppant settling velocity has been examined for small fracture widths to delineate the effect of several independent variables, including concentration. Simulations demonstrate that larger concentration increases the average settling velocity, in apparent contrast with much of the available literature, which indicates that increased concentration reduces settling velocity. However, this is due to the absence of displacement driven counter current fluid flow. This demonstrates that proppant settling in a hydraulic fracture is more complex than usually considered. A proppant transport model developed from the results of the direct numerical simulations and existing correlations for particle settling velocity has been incorporated into a fully three-dimensional hydraulic fracturing simulator. This simulator couples fracture geomechanics with fluid flow and proppant transport considerations to enable the fracture geometry and proppant distribution to be determined rigorously. Two engineering fracture design parameters, injection rate and proppant diameter, have been varied to show the effect on proppant placement. This allows for an understanding of the relative importance of each and optimization of the treatment to a particular application. The presence of natural fractures in unconventional reservoirs can significantly contribute to well productivity. As proppant is transported along a hydraulic fracture, the presence of a dilated natural fracture forms a fluid accepting branch and may result in proppant entry. The proportion of proppant transported into a branch at steady state has been determined using the CFD-DEM approach and is presented via a dimensionless ‘particle transport coefficient’ through normalization by the proportion of fluid flowing into the branch. Reynolds number at the inlet, branch aperture and the angle of orientation between the main slot and branch, particle size and concentration each affect the transport coefficient. A very different physical process, which controls particle transport into a branch under certain conditions, is the formation of a stable particle bridge preventing subsequent particle transport into the branch. This phenomenon was observed in several simulation cases. The complete set of equations for a three-dimensional formulation of rectangular displacement discontinuity elements has been used to determine the width distribution of a hydraulic fracture and dilated natural fracture. The widths have been determined for several combinations of stress anisotropy, net pressure, hydraulic fracture height and length. The effect of the length, height and orientation of the natural fracture and the elastic moduli of the rock have also been examined. Of the cases examined, many show that natural fracture dilation does not occur. Further, of those cases where dilation is apparent, the proppant transport efficiency corresponding to the natural fracture width is significantly less than one and in many cases zero due to size exclusion. The location and orientation of the natural fracture do not significantly affect its width, while its length and the elastic moduli of the rock substantially change the width.

Proppant Transport in Complex Fracture Networks

Proppant Transport in Complex Fracture Networks PDF Author: Christopher Allen Johnson Blyton
Publisher:
ISBN:
Category :
Languages : en
Pages : 320

Get Book Here

Book Description
Current hydraulic fracturing practice in unconventional resource development typically involves multiple fracturing stages, each consisting of the simultaneous creation of several fractures from a horizontal well. A large mass of proppant, often millions of pounds per well, is injected with the fluid to provide post-closure conductivity. Despite the large quantity of proppant used and its critical importance to well productivity, simple models are often applied to determine its placement in fractures. Propped or effective fracture lengths indicated by modeling may be 100 to 300% larger than the lengths inferred from production data. A common assumption is that the average proppant velocity due to pressure driven flow is equal to the average carrier fluid velocity, while the settling velocity calculation uses Stokes’ law. To more accurately determine the placement of proppant in a fracture, it is necessary to rigorously account for many effects not included in the above assumptions. In this study, the motion of particles flowing with a fluid between fracture walls has been simulated using a coupled computational fluid dynamics and discrete element method (CFD-DEM) that rigorously accounts for the both aspects of the problem. These simulations determine individual particle trajectories as particle to particle and particle to wall collisions occur and include the effect of fluid flow. The results show that the proppant concentration and the ratio of proppant diameter to fracture width govern the relative velocity of proppant and fluid. Proppant settling velocity has been examined for small fracture widths to delineate the effect of several independent variables, including concentration. Simulations demonstrate that larger concentration increases the average settling velocity, in apparent contrast with much of the available literature, which indicates that increased concentration reduces settling velocity. However, this is due to the absence of displacement driven counter current fluid flow. This demonstrates that proppant settling in a hydraulic fracture is more complex than usually considered. A proppant transport model developed from the results of the direct numerical simulations and existing correlations for particle settling velocity has been incorporated into a fully three-dimensional hydraulic fracturing simulator. This simulator couples fracture geomechanics with fluid flow and proppant transport considerations to enable the fracture geometry and proppant distribution to be determined rigorously. Two engineering fracture design parameters, injection rate and proppant diameter, have been varied to show the effect on proppant placement. This allows for an understanding of the relative importance of each and optimization of the treatment to a particular application. The presence of natural fractures in unconventional reservoirs can significantly contribute to well productivity. As proppant is transported along a hydraulic fracture, the presence of a dilated natural fracture forms a fluid accepting branch and may result in proppant entry. The proportion of proppant transported into a branch at steady state has been determined using the CFD-DEM approach and is presented via a dimensionless ‘particle transport coefficient’ through normalization by the proportion of fluid flowing into the branch. Reynolds number at the inlet, branch aperture and the angle of orientation between the main slot and branch, particle size and concentration each affect the transport coefficient. A very different physical process, which controls particle transport into a branch under certain conditions, is the formation of a stable particle bridge preventing subsequent particle transport into the branch. This phenomenon was observed in several simulation cases. The complete set of equations for a three-dimensional formulation of rectangular displacement discontinuity elements has been used to determine the width distribution of a hydraulic fracture and dilated natural fracture. The widths have been determined for several combinations of stress anisotropy, net pressure, hydraulic fracture height and length. The effect of the length, height and orientation of the natural fracture and the elastic moduli of the rock have also been examined. Of the cases examined, many show that natural fracture dilation does not occur. Further, of those cases where dilation is apparent, the proppant transport efficiency corresponding to the natural fracture width is significantly less than one and in many cases zero due to size exclusion. The location and orientation of the natural fracture do not significantly affect its width, while its length and the elastic moduli of the rock substantially change the width.

Quantifying Ceramic Proppant Transport in Complex Fracture Networks

Quantifying Ceramic Proppant Transport in Complex Fracture Networks PDF Author: Vivekvardhan Reddy Kesireddy
Publisher:
ISBN:
Category :
Languages : en
Pages : 91

Get Book Here

Book Description
"Water fracs have become an essential part of unconventional reservoirs to create deeper fracture networks. Proppant transport in water fracs is challenging in terms of fluids ability to carry the proppant deeper into these fracture networks. This experimental study investigates the impact of the flow rates, fracture widths and complexity controlling the ability of proppant to flow into complex fracture networks. This research attempts to nullify the knowledge gap in understanding width heterogeneity in primary and secondary fractures. This study speaks for settling pattern and proppant transport through a slot flow model with a unique approach to understand stage wise distribution of proppant. The slurry was injected in multiple fracture pore volumes at required flow rates to monitor the stage-wise development of proppant bed. Study illustrates proppant transport in terms of proppant bed heights, equilibrium dune levels and proppant area fractions. Results represents proppant transport for fracture widths, which are comparable to proppant diameter. Two different configurations of apparatus were used to investigate heterogeneity in width in complex fracture networks. Results describe stepwise distribution of ceramic proppant under the influence of flow rates, fracture width and complexity. The bed height gradually builds up in the slot with each injection to achieve an equilibrium bed height. Injection slurry velocities primarily affect proppant transport affecting its distribution in fractures. The fracture width showed a significant impact on proppant transport. Width heterogeneity in complex fracture systems provide better proppant distribution in complex fracture networks. Heterogeneity of width in the fracture caused increased settling and more proppant surface area fractions. The results help in optimizing the proppant flow patterns into complex fracture networks"--Abstract, page iii.

Slickwater Proppant Transport in Complex Hydraulic Fracture Networks

Slickwater Proppant Transport in Complex Hydraulic Fracture Networks PDF Author: Msalli A. Alotaibi
Publisher:
ISBN:
Category : Correlation (Statistics)
Languages : en
Pages : 201

Get Book Here

Book Description


Integrated 3-dimensional Modeling of Proppant Transport Through Hydraulic Fracture Network in Shale Gas Reservoir

Integrated 3-dimensional Modeling of Proppant Transport Through Hydraulic Fracture Network in Shale Gas Reservoir PDF Author: Oliver Chang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Hydraulic fracturing is one of the most successful and widely applied techniques that ensure economic recovery from unconventional reservoirs. Oil and gas bearing formation has pre-existing natural fractures and possesses a large proportion in hydrocarbon resources. Distinct fracture propagational behavior and operational variation both affect the entire hydraulic fracturing treatment. Proppant transport and fracture network conductivity are the most significant factors determining the effectiveness of a treatment. The concept of stimulated reservoir volume (SRV) is used to characterize the efficiency of hydraulic fracturing treatment. However, the unpropped fracture will close after the well starts to produce without contributing hydrocarbon recovery. Only the propped open section of fracture contributes to the hydrocarbon recovery. Therefore, the concept of propped open stimulated reservoir volume (PSRV) is proposed to characterize the effectiveness of the treatment. Physics of proppant transport in a complex fracture network is unclear to the engineers. Most of the model simulates using simplified physics. In this work, we first identified the patterns of proppant transport and we developed equations to quantify the governing physics in each pattern, in order to capture the proppant transport process accurately. To quantify the PSRV, a dynamic 3-D, finite-difference, proppant transport model is developed and linked to a hydraulic fracture propagation model to simulate the process of proppant transport through the hydraulic fracture network. The actual propped open stimulated reservoir volume (PSRV) and fracture network conductivity can be quantified by utilizing the model. The goal of this study is to generate guidelines to maximize the effectiveness of the hydraulic fracturing treatment. Hence, a systematic parametric study was conducted to investigate the relation among engineering factors, geomechanical and reservoir properties. The effect of each parameter on PSRV, PSRV/SRV efficiency ratio, and average fracture conductivity during pressure pumping, flowback and shut-in is evaluate and quantified. Guidelines to optimize the effectiveness of hydraulic fracturing treatment for different scenarios are established based on the systematic parametric study.

Mechanics of Hydraulic Fracturing

Mechanics of Hydraulic Fracturing PDF Author: Ching H. Yew
Publisher: Gulf Professional Publishing
ISBN: 0124200117
Category : Technology & Engineering
Languages : en
Pages : 245

Get Book Here

Book Description
Revised to include current components considered for today’s unconventional and multi-fracture grids, Mechanics of Hydraulic Fracturing, Second Edition explains one of the most important features for fracture design — the ability to predict the geometry and characteristics of the hydraulically induced fracture. With two-thirds of the world’s oil and natural gas reserves committed to unconventional resources, hydraulic fracturing is the best proven well stimulation method to extract these resources from their more remote and complex reservoirs. However, few hydraulic fracture models can properly simulate more complex fractures. Engineers and well designers must understand the underlying mechanics of how fractures are modeled in order to correctly predict and forecast a more advanced fracture network. Updated to accommodate today’s fracturing jobs, Mechanics of Hydraulic Fracturing, Second Edition enables the engineer to: Understand complex fracture networks to maximize completion strategies Recognize and compute stress shadow, which can drastically affect fracture network patterns Optimize completions by properly modeling and more accurately predicting for today’s hydraulic fracturing completions Discusses the underlying mechanics of creating a fracture from the wellbore Enhanced to include newer modeling components such as stress shadow and interaction of hydraulic fracture with a natural fracture, which aids in more complex fracture networks Updated experimental studies that apply to today’s unconventional fracturing cases

Improvement of Fracture Conductivity Through Study of Proppant Transport and Chemical Stimulation

Improvement of Fracture Conductivity Through Study of Proppant Transport and Chemical Stimulation PDF Author: Songyang Tong
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
During hydraulic fracturing treatments, proppants - usually sand - are placed inside fractures to improve fracture conductivity. However, a large portion of the generated hydraulic fractures often remain unpropped after fracturing treatments. There are two primary reasons for this poor proppant placement. First, proppants settle quickly in common fracturing fluids (e.g., slickwater), which results in unpropped sections at the tip or top of the fracture. Second, a large number of the microfractures are too narrow to accommodate any common commercial proppant. Such unpropped fractures hold a large potential flow capacity as they exhibit a large contact area with the reservoir. However, their potential flow capacity is diminished during production due to closing of unpropped fractures because of closure stress. In this study, fractures are categorized as wider fractures, which are accessible to proppant, and narrower fractures, which are inaccessible to proppant. For wider fractures, proppant transport is important as proppant is needed for keeping them open. For narrower fractures, a chemical formulation is proposed as there is less physical restriction for fluids to flow inside across them. The chemical formulation is expected to improve fracture conductivity by generating roughness on fracture surfaces. This dissertation uses experiments and simulations to investigate proppant transport in a complex fracture network with laboratory-scale transparent fracture slots. Proppant size, injection flow rate and bypass fracture angle are varied and their effects are systematically evaluated. Based on experimental results, a straight-line relationship can be used to quantify the fraction of proppant that flows into bypass fractures with the total amount of proppant injected. A Computational Fluid Dynamics (CFD) model is developed to simulate the experiments; both qualitative and quantitative matches are achieved with this model. It is concluded that the fraction of proppant which flows into bypass fractures could be small unless a significant amount of proppant is injected, which indicates the inefficiency of slickwater in transporting proppant. An alternative fracturing fluid - foam - has been proposed to improve proppant placement because of its proppant carrying capacity. Foam is not a single-phase fluid, and it suffers liquid drainage with time due to gravity. Additionally, the existence of foam bubbles and lamellae could alter the movement of proppants. Experiments and simulations are performed to evaluate proppant placement in field-scale foam fracturing application. A liquid drainage model and a proppant settling correlation are developed and incorporated into an in-housing fracturing simulator. Results indicate that liquid drainage could negatively affect proppant placement, while dry foams could lead to negligible proppant settling and consequently uniform proppant placement. For narrower fractures, two chemical stimulation techniques are proposed to improve fracture conductivity by increasing fracture surface roughness. The first is a nanoparticle-microencapsulated acid (MEA) system for shale acidizing applications, and the second is a new technology which can generate mineral crystals on the shale surface to act as in-situ proppants. The MEA could be released as the fracture closes and the released acid could etch the surface of the rock locally, in a non-uniform way, to improve fracture conductivity (up to 40 times). Furthermore, the in-situ proppant generation technology can lead to crystal growth in both fracking water and formation brine conditions, and it also improves fracture conductivity (up to 10 times) based on core flooding experiments

Modeling of Proppant Transport Through Hydraulic Fracture Network

Modeling of Proppant Transport Through Hydraulic Fracture Network PDF Author: Oliver Chih-Young Chang
Publisher:
ISBN:
Category :
Languages : en
Pages : 112

Get Book Here

Book Description


Numerical Simulation of Proppant Displacement in Scaled Fracture Networks

Numerical Simulation of Proppant Displacement in Scaled Fracture Networks PDF Author: Yibo Song
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
While hydraulic fracturing is recognized as the most effective stimulation technique for unconventional reservoirs, the production enhancement is influenced by several factors including proppant placement inside the fractures. The goal of this work is to understand the proppant transport and its placement process in "T" shaped fracture network through simulations. The proppant transport is studied numerically by coupling a computational fluid dynamic model for the base shear-thinning fluid and the discrete element methods for proppant particles. In the CFD model, the forces on proppants are calculated based on fluid properties, while fluid properties are updated based on the particle concentration at any point and time. In the DEM model, the motion and position of each individual proppant is calculated based on the gravity and drag forces from the CFD model, which makes it possible to reproduce some phenomena that cannot be simulated in continuum concentration-oriented models. A scaling analysis has been performed to scale down the model from field scale to lab scale by deriving relevant dimensionless variables. Different proppant size distributions and injection velocities are considered, as well as the friction and cohesion effects among particle and fracture surface. The simulation results show that in the primary fracture, the injected proppants could divide into three layers: the bottom sand bed zone, the middle surface rolling zone, and the top slurry flow zone. The total number of the proppants do not increase much after the sand dune reach an equilibrium height. A smaller size proppant would benefit the development of sand dune in the secondary fracture, whereas a larger proppant size would benefit the increase rate of the sand dune. The equilibrium height of sand dune in the minor fracture could be greater than the primary fracture, and the distribution of proppant dunes is symmetric. A lower proppant load would amplify the impact of friction as well as the erosion force, which would finally deliver a negative impact on equilibrium height. Two deposit mechanisms have also identified in the bypass fracture network.

Experimental and Modeling Evaluation of Proppant Transport in Complex Fractures

Experimental and Modeling Evaluation of Proppant Transport in Complex Fractures PDF Author: Abla Rhouma
Publisher:
ISBN:
Category : Computational fluid dynamics
Languages : en
Pages : 157

Get Book Here

Book Description


Laboratory Evaluation of Proppant Transport in Complex Fracture Systems

Laboratory Evaluation of Proppant Transport in Complex Fracture Systems PDF Author: Rakshit Sahai
Publisher:
ISBN:
Category : Gas reservoirs
Languages : en
Pages : 132

Get Book Here

Book Description