Projective Geometry and Its Applications to Computer Graphics

Projective Geometry and Its Applications to Computer Graphics PDF Author: Michael A. Penna
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 426

Get Book Here

Book Description

Projective Geometry and Its Applications to Computer Graphics

Projective Geometry and Its Applications to Computer Graphics PDF Author: Michael A. Penna
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 426

Get Book Here

Book Description


Geometric Methods and Applications

Geometric Methods and Applications PDF Author: Jean Gallier
Publisher: Springer Science & Business Media
ISBN: 1461301378
Category : Mathematics
Languages : en
Pages : 584

Get Book Here

Book Description
As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.

The Use of Projective Geometry in Computer Graphics

The Use of Projective Geometry in Computer Graphics PDF Author: Ivan Herman
Publisher: Springer
ISBN: 9783662187999
Category : Computers
Languages : en
Pages : 151

Get Book Here

Book Description
The ultimate goal of all 3D graphics systems is to render 3D objects on a two-dimensional surface such as plotter output or a workstation screen. The approach adopted by most graphics systems is to perform a central or parallel projection of the objects onto the view surface. These systems have to make use of the mathematical results of projective geometry. This monograph has as its aim the derivation of a framework for analyzing the behavior of projective transformations in graphics systems. It is shown that a mathematically precise description of the projective geometrical nature of a graphics system leads not only to a deeper understanding of the system but also to new approaches which result in faster or more precise algorithms. A further aim of the book is to show the importance of advanced mathematics for computer science. Many problems become easier to describe or to solve when the appropriate mathematical tools are used. The author demonstrates that projective geometry has a major role to play in computer graphics.

Perspective and Projective Geometry

Perspective and Projective Geometry PDF Author: Annalisa Crannell
Publisher: Princeton University Press
ISBN: 0691197385
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
Through a unique approach combining art and mathematics, Perspective and Projective Geometry introduces students to the ways that projective geometry applies to perspective art. Geometry, like mathematics as a whole, offers a useful and meaningful lens for understanding the visual world. Exploring pencil-and-paper drawings, photographs, Renaissance paintings, and GeoGebra constructions, this textbook equips students with the geometric tools for projecting a three-dimensional scene onto two dimensions. Organized as a series of exercise modules, this book teaches students through hands-on inquiry and participation. Each lesson begins with a visual puzzle that can be investigated through geometry, followed by exercises that reinforce new concepts and hone students’ analytical abilities. An electronic instructor’s manual available to teachers contains sample syllabi and advice, including suggestions for pacing and grading rubrics for art projects. Drawing vital interdisciplinary connections between art and mathematics, Perspective and Projective Geometry is ideally suited for undergraduate students interested in mathematics or computer graphics, as well as for mathematically inclined students of architecture or art. · Features computer-based GeoGebra modules and hands-on exercises · Contains ample visual examples, math and art puzzles, and proofs with real-world applications · Suitable for college students majoring in mathematics, computer science, and art · Electronic instructor’s manual (available only to teachers)

Applied Geometry for Computer Graphics and CAD

Applied Geometry for Computer Graphics and CAD PDF Author: Duncan Marsh
Publisher: Springer
ISBN: 1846281091
Category : Computers
Languages : en
Pages : 361

Get Book Here

Book Description
Focusing on the manipulation and representation of geometrical objects, this book explores the application of geometry to computer graphics and computer-aided design (CAD). Over 300 exercises are included, some new to this edition, and many of which encourage the reader to implement the techniques and algorithms discussed through the use of a computer package with graphing and computer algebra capabilities. A dedicated website also offers further resources and useful links.

Computer Graphics and Geometric Modelling

Computer Graphics and Geometric Modelling PDF Author: Max K. Agoston
Publisher: Springer Science & Business Media
ISBN: 9781852338183
Category : Computers
Languages : en
Pages : 960

Get Book Here

Book Description
Possibly the most comprehensive overview of computer graphics as seen in the context of geometric modeling, this two-volume work covers implementation and theory in a thorough and systematic fashion. It covers the computer graphics part of the field of geometric modeling and includes all the standard computer graphics topics. The CD-ROM features two companion programs.

Geometric Methods and Applications

Geometric Methods and Applications PDF Author: Jean Gallier
Publisher: Springer Science & Business Media
ISBN: 1441999612
Category : Mathematics
Languages : en
Pages : 696

Get Book Here

Book Description
This book is an introduction to the fundamental concepts and tools needed for solving problems of a geometric nature using a computer. It attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, robotics, or machine learning. This book covers the following topics: affine geometry, projective geometry, Euclidean geometry, convex sets, SVD and principal component analysis, manifolds and Lie groups, quadratic optimization, basics of differential geometry, and a glimpse of computational geometry (Voronoi diagrams and Delaunay triangulations). Some practical applications of the concepts presented in this book include computer vision, more specifically contour grouping, motion interpolation, and robot kinematics. In this extensively updated second edition, more material on convex sets, Farkas’s lemma, quadratic optimization and the Schur complement have been added. The chapter on SVD has been greatly expanded and now includes a presentation of PCA. The book is well illustrated and has chapter summaries and a large number of exercises throughout. It will be of interest to a wide audience including computer scientists, mathematicians, and engineers. Reviews of first edition: "Gallier's book will be a useful source for anyone interested in applications of geometrical methods to solve problems that arise in various branches of engineering. It may help to develop the sophisticated concepts from the more advanced parts of geometry into useful tools for applications." (Mathematical Reviews, 2001) "...it will be useful as a reference book for postgraduates wishing to find the connection between their current problem and the underlying geometry." (The Australian Mathematical Society, 2001)

A Course in Modern Geometries

A Course in Modern Geometries PDF Author: Judith N. Cederberg
Publisher: Springer Science & Business Media
ISBN: 1475734905
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
Designed for a junior-senior level course for mathematics majors, including those who plan to teach in secondary school. The first chapter presents several finite geometries in an axiomatic framework, while Chapter 2 continues the synthetic approach in introducing both Euclids and ideas of non-Euclidean geometry. There follows a new introduction to symmetry and hands-on explorations of isometries that precedes an extensive analytic treatment of similarities and affinities. Chapter 4 presents plane projective geometry both synthetically and analytically, and the new Chapter 5 uses a descriptive and exploratory approach to introduce chaos theory and fractal geometry, stressing the self-similarity of fractals and their generation by transformations from Chapter 3. Throughout, each chapter includes a list of suggested resources for applications or related topics in areas such as art and history, plus this second edition points to Web locations of author-developed guides for dynamic software explorations of the Poincaré model, isometries, projectivities, conics and fractals. Parallel versions are available for "Cabri Geometry" and "Geometers Sketchpad".

Lumen Naturae

Lumen Naturae PDF Author: Matilde Marcolli
Publisher: MIT Press
ISBN: 0262358328
Category : Mathematics
Languages : en
Pages : 390

Get Book Here

Book Description
Exploring common themes in modern art, mathematics, and science, including the concept of space, the notion of randomness, and the shape of the cosmos. This is a book about art—and a book about mathematics and physics. In Lumen Naturae (the title refers to a purely immanent, non-supernatural form of enlightenment), mathematical physicist Matilde Marcolli explores common themes in modern art and modern science—the concept of space, the notion of randomness, the shape of the cosmos, and other puzzles of the universe—while mapping convergences with the work of such artists as Paul Cezanne, Mark Rothko, Sol LeWitt, and Lee Krasner. Her account, focusing on questions she has investigated in her own scientific work, is illustrated by more than two hundred color images of artworks by modern and contemporary artists. Thus Marcolli finds in still life paintings broad and deep philosophical reflections on space and time, and connects notions of space in mathematics to works by Paul Klee, Salvador Dalí, and others. She considers the relation of entropy and art and how notions of entropy have been expressed by such artists as Hans Arp and Fernand Léger; and traces the evolution of randomness as a mode of artistic expression. She analyzes the relation between graphical illustration and scientific text, and offers her own watercolor-decorated mathematical notebooks. Throughout, she balances discussions of science with explorations of art, using one to inform the other. (She employs some formal notation, which can easily be skipped by general readers.) Marcolli is not simply explaining art to scientists and science to artists; she charts unexpected interdependencies that illuminate the universe.

3D Computer Graphics

3D Computer Graphics PDF Author: Samuel R. Buss
Publisher: Cambridge University Press
ISBN: 1139440381
Category : Computers
Languages : en
Pages : 397

Get Book Here

Book Description
This textbook, first published in 2003, emphasises the fundamentals and the mathematics underlying computer graphics. The minimal prerequisites, a basic knowledge of calculus and vectors plus some programming experience in C or C++, make the book suitable for self study or for use as an advanced undergraduate or introductory graduate text. The author gives a thorough treatment of transformations and viewing, lighting and shading models, interpolation and averaging, Bézier curves and B-splines, ray tracing and radiosity, and intersection testing with rays. Additional topics, covered in less depth, include texture mapping and colour theory. The book covers some aspects of animation, including quaternions, orientation, and inverse kinematics, and includes source code for a Ray Tracing software package. The book is intended for use along with any OpenGL programming book, but the crucial features of OpenGL are briefly covered to help readers get up to speed. Accompanying software is available freely from the book's web site.