Proceedings

Proceedings PDF Author: Jay P. Boris
Publisher:
ISBN:
Category : Blood plasma
Languages : en
Pages : 772

Get Book Here

Book Description

Proceedings

Proceedings PDF Author: Jay P. Boris
Publisher:
ISBN:
Category : Blood plasma
Languages : en
Pages : 772

Get Book Here

Book Description


Controlled Fusion

Controlled Fusion PDF Author: John Killeen
Publisher: Elsevier
ISBN: 0323149367
Category : Science
Languages : en
Pages : 465

Get Book Here

Book Description
Methods in Computational Physics, Volume 16: Controlled Fusion considers the full variety of computer models needed for the simulation of realistic fusion devices. These computer models include time-dependent magnetohydrodynamics, plasma transport in a magnetic field, MHD and guiding-center equilibria, MHD stability of confinement systems, Vlasov and particle models, and multispecies Fokker-Planck codes. This volume is divided into 11 chapters. The first three chapters discuss various aspects of the numerical solution of the equations of magnetohydrodynamics (MHD). The subsequent chapters present the more realistic models, including the thermal conductivity and electrical resistivity. Other chapters describe two-dimensional codes with varies choice of coordinate systems, such as fixed Eulerian grid, Lagrangian descriptions, and the use of magnetic flux surfaces as coordinate surfaces. The discussion then shifts to models on the inclusion of neutrals and impurities, as well as the use of empirical transport coefficients. A chapter surveys the development of time-dependent codes to support the design and operation of major CTR experiment. The final chapters explore the electromagnetic codes in the nonradiative limit (Darwin model) where the equations are nonrelativistic and displacement currents are neglected. This book is an invaluable source for geoscientists, physicists, and mathematicians.

Computer Applications in Plasma Science and Engineering

Computer Applications in Plasma Science and Engineering PDF Author: Adam T. Drobot
Publisher: Springer Science & Business Media
ISBN: 1461230926
Category : Computers
Languages : en
Pages : 466

Get Book Here

Book Description
This volume, which contains 15 contributions, is based on a minicourse held at the 1987 IEEE Plasma Science Meeting. The purpose of the lectures in the course was to acquaint the students with the multidisciplinary nature of computational techniques and the breadth of research areas in plasma science in which computation can address important physics and engineering design issues. These involve: electric and magnetic fields, MHD equations, chemistry, radiation, ionization etc. The contents of the contributions, written subsequent to the minicourse, stress important aspects of computer applications. They are: 1) the numerical methods used; 2) the range of applicability; 3) how the methods are actually employed in research and in the design of devices; and, as a compendium, 4) the multiplicity of approaches possible for any one problem. The materials in this book are organized by both subject and applications which display some of the richness in computational plasma physics.

Introduction to Simulation Methods for Gas Discharge Plasmas

Introduction to Simulation Methods for Gas Discharge Plasmas PDF Author: Ismail Rafatov
Publisher: Myprint
ISBN: 9780750323611
Category :
Languages : en
Pages : 124

Get Book Here

Book Description
Gas discharge plasma is the most common type of low-temperature plasma, with a large number of practical applications covering almost all areas of modern science and technology. This book is an introduction to the numerical modeling methods for gas discharge plasmas. It is intended to assist and direct graduate students and junior researchers, whose research activity deals with computational plasma physics. Topics covered include the essentials of basic modelling approaches (particle, fluid, and hybrid) for gas discharges, and the implementation of these methods with examples of glow (DC and RF) discharges. Numerical studies of nonlinear dynamics and formation of spatio-temporal patterns in gas discharge systems are also presented. Key Features Focuses solely on gas discharge plasmas Covers basic modelling techniques, including particle, fluid, and hybrid Provides details of applications and implementation for the considered methods Special emphasis is given to the applicability and reliability of different modelling techniques Provides specific examples of numerical simulations of the gas discharge plasmas

Electron Dynamics of Diode Regions

Electron Dynamics of Diode Regions PDF Author: Charles K. Birdsall
Publisher: Elsevier
ISBN: 032316241X
Category : Technology & Engineering
Languages : en
Pages : 287

Get Book Here

Book Description
Electron Dynamics of Diode Regions describes the model construction and analysis of motion of charged particles of diode regions in time-varying fields. The models analyzed are simplified versions of parts of practical devices, primarily active microwave devices, tubes, and semiconductor amplifiers, while the most striking results obtained are due to electron inertia and space-charge effects in terms of laboratory observable. This book is composed of seven chapters, and begins with an introduction to the general concepts of time dependent flow, including induced current, the techniques of linearization, calculating variational transit time, and obtaining equivalent circuits. The following chapters present the classical linear analysis, which includes the space-charge effects, with several applications. These chapters also explore the existence of a maximum stable current in a space-charge limited diode. The discussion then shifts to the basics of high velocity, klystron, gap with nonuniform field distributions, and the application of the multicavity klystron. This text further covers the analysis and examples of crossed-field gaps. The final chapters deal with the fundamentals of velocity and current distributions obtained from common electron emitters, with some attempt to show how the multivelocity streams evolve into single-velocity equivalents needed for the methods of earlier chapters. Results of applying the Lagrangian starting analysis to semiconductor diode regions, necessarily from a new equation of motion, are also provided. This book is intended for graduate courses, seminars, and research studies.

Plasma Modeling

Plasma Modeling PDF Author: Gianpiero Colonna
Publisher:
ISBN: 9780750335584
Category : SCIENCE
Languages : en
Pages : 0

Get Book Here

Book Description
Plasma Modeling: Methods and applications presents and discusses the different approaches that can be adopted for plasma modeling, giving details about theoretical and numerical methods. It describes kinetic models used in plasma investigations, develops the theory of fluid equations and hybrid models, and discusses applications and practical problems across a range of fields. This updated second edition contains over 200 pages of new material, including an extensive new part that discusses methods to calculate data needed in plasma modeling, such as thermodynamic and transport properties, state specific rate coefficients in heavy particle collisions and electron impact cross-sections. This updated research and reference text is an excellent resource to assist and direct students and researchers who want to develop research activity in the field of plasma physics in the choice of the best model for the problem of interest.

Proceedings

Proceedings PDF Author:
Publisher:
ISBN:
Category : Plasma (Ionized gases)
Languages : en
Pages : 98

Get Book Here

Book Description


Exascale Scientific Applications

Exascale Scientific Applications PDF Author: Tjerk P. Straatsma
Publisher: CRC Press
ISBN: 1351999249
Category : Computers
Languages : en
Pages : 607

Get Book Here

Book Description
Describes practical programming approaches for scientific applications on exascale computer systems Presents strategies to make applications performance portable Provides specific solutions employed in current application porting and development Illustrates domain science software development strategies based on projected trends in supercomputing technology and architectures Includes contributions from leading experts involved in the development and porting of scientific codes for current and future high performance computing resources

Micro Electronic and Mechanical Systems

Micro Electronic and Mechanical Systems PDF Author: Kenichi Takahata
Publisher: BoD – Books on Demand
ISBN: 9533070277
Category : Technology & Engineering
Languages : en
Pages : 528

Get Book Here

Book Description
This book discusses key aspects of MEMS technology areas, organized in twenty-seven chapters that present the latest research developments in micro electronic and mechanical systems. The book addresses a wide range of fundamental and practical issues related to MEMS, advanced metal-oxide-semiconductor (MOS) and complementary MOS (CMOS) devices, SoC technology, integrated circuit testing and verification, and other important topics in the field. ?Several chapters cover state-of-the-art microfabrication techniques and materials as enabling technologies for the microsystems. Reliability issues concerning both electronic and mechanical aspects of these devices and systems are also addressed in various chapters.

Magnetic Control of Tokamak Plasmas

Magnetic Control of Tokamak Plasmas PDF Author: Marco Ariola
Publisher: Springer
ISBN: 3319298909
Category : Technology & Engineering
Languages : en
Pages : 208

Get Book Here

Book Description
This book is a complete treatment of work done to resolve the problems of position-, current-, and shape-control of plasma in tokamak-type (toroidal) devices being studied as a potential means of commercial energy production by nuclear fusion. Modelling and control are both detailed, allowing non-expert readers to understand the control problem. Starting from the magneto-hydro-dynamic equations, all the steps needed for the derivation of plasma state-space models are enumerated with frequent recall of the basic concepts of electromagnetics. The control problem is then described, beginning with the control of current and position—vertical and radial—control and progressing to the more challenging shape control. The solutions proposed vary from simple PIDs to more sophisticated MIMO controllers. The second edition of Magnetic Control of Tokamak Plasmas contains numerous updates and a substantial amount of completely new material covering areas such as: • modelling and control of resistive wall modes—the most important non-axisimmetric mode; • the isoflux approach for shape control; • a general approach for the control of limiter plasmas; • the use of inner vessel coils for vertical stabilization; and • significantly enhanced treatment of plasma-shape control at JET, including experimental results and introducing a method implemented for operation in the presence of current saturations. Whenever possible, coverage of the various topics is rounded out with experimental results obtained on currently existing tokamaks. The book also includes a presentation of the typical actuators and sensors used for control purposes in tokamaks. Some mathematical details are given in the appendices for the interested reader. The ideas formulated in this monograph will be of great practical help to control engineers, academic researchers and graduate students working directly with problems related to the control of nuclear fusion. They will also stimulate control researchers interested more generally in the advanced applications of the discipline. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.