Probing Triple-Higgs Productions Via [math Display

Probing Triple-Higgs Productions Via [math Display PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We report that the quartic self-coupling of the Standard Model Higgs boson can only be measured by observing the triple-Higgs production process, but it is challenging for the LHC Run 2 or International Linear Collider (ILC) at a few TeV because of its extremely small production rate. In this paper, we present a detailed Monte Carlo simulation study of the triple-Higgs production through gluon fusion at a 100 TeV hadron collider and explore the feasibility of observing this production mode. We focus on the decay channel HHH 2!b\bar{b}$$b\bar{b}$[gamma][gamma], investigating detector effects and optimizing the kinematic cuts to discriminate the signal from the backgrounds. Our study shows that, in order to observe the Standard Model triple-Higgs signal, the integrated luminosity of a 100 TeV hadron collider should be greater than 1.8×104 ab1. We also explore the dependence of the cross section upon the trilinear ([lambda]3) and quartic ([lambda]4) self-couplings of the Higgs. Ultimately, we find that, through a search in the triple-Higgs production, the parameters [lambda]3 and [lambda]4 can be restricted to the ranges [−1,5] and [−20,30], respectively. We also examine how new physics can change the production rate of triple-Higgs events. For example, in the singlet extension of the Standard Model, we find that the triple-Higgs production rate can be increased by a factor of O(10).

Probing Triple-Higgs Productions Via [math Display

Probing Triple-Higgs Productions Via [math Display PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We report that the quartic self-coupling of the Standard Model Higgs boson can only be measured by observing the triple-Higgs production process, but it is challenging for the LHC Run 2 or International Linear Collider (ILC) at a few TeV because of its extremely small production rate. In this paper, we present a detailed Monte Carlo simulation study of the triple-Higgs production through gluon fusion at a 100 TeV hadron collider and explore the feasibility of observing this production mode. We focus on the decay channel HHH 2!b\bar{b}$$b\bar{b}$[gamma][gamma], investigating detector effects and optimizing the kinematic cuts to discriminate the signal from the backgrounds. Our study shows that, in order to observe the Standard Model triple-Higgs signal, the integrated luminosity of a 100 TeV hadron collider should be greater than 1.8×104 ab1. We also explore the dependence of the cross section upon the trilinear ([lambda]3) and quartic ([lambda]4) self-couplings of the Higgs. Ultimately, we find that, through a search in the triple-Higgs production, the parameters [lambda]3 and [lambda]4 can be restricted to the ranges [−1,5] and [−20,30], respectively. We also examine how new physics can change the production rate of triple-Higgs events. For example, in the singlet extension of the Standard Model, we find that the triple-Higgs production rate can be increased by a factor of O(10).

Probing the Higgs Self Coupling Via Single Higgs Production at the LHC.

Probing the Higgs Self Coupling Via Single Higgs Production at the LHC. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 31

Get Book Here

Book Description
Here, we propose a method to determine the trilinear Higgs self coupling that is alternative to the direct measurement of Higgs pair production total cross sections and differential distributions. Furthermore, the method relies on the effects that electroweak loops featuring an anomalous trilinear coupling would imprint on single Higgs production at the LHC. We first calculate these contributions to all the phenomenologically relevant Higgs production (ggF, VBF, WH, ZH, t$\bar{t}$) and decay ([gamma][gamma], WW*/ZZ*2!4f, b$\bar{b}$, [tau][tau]) modes at the LHC and then estimate the sensitivity to the trilinear coupling via a one-parameter fit to the single Higgs measurements at the LHC 8 TeV. We also found that the bounds on the self coupling are already competitive with those from Higgs pair production and will be further improved in the current and next LHC runs.

Looking Inside Jets

Looking Inside Jets PDF Author: Simone Marzani
Publisher: Springer
ISBN: 3030157091
Category : Science
Languages : en
Pages : 205

Get Book Here

Book Description
This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.

Mathematics and Computation

Mathematics and Computation PDF Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434

Get Book Here

Book Description
An introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

Perspectives On Supersymmetry

Perspectives On Supersymmetry PDF Author: Gordon Kane
Publisher: World Scientific
ISBN: 9814495824
Category : Science
Languages : en
Pages : 503

Get Book Here

Book Description
Supersymmetry is at an exciting stage of development. It extends the Standard Model of particle physics into a more powerful theory that both explains more and allows more questions to be addressed. Most important, it opens a window for studying and testing fundamental theories at the Planck scale. Experimentally we are finally entering the intensity and energy regions where superpartners are likely to be detected, and then studied. There has been progress in understanding the remarkable physics implications of supersymmetry, including the derivation of the Higgs mechanism, the unification of the Standard Model forces, cosmological connections such as a candidate for the cold dark matter of the universe and the scalar fields that drive inflation and their potential, the relationship to Planck scale theories, and more.While there are a number of reviews and books where the mathematical structure and uses of supersymmetry can be learned, there are few where the particle physics is the main focus. This book fills that gap. It begins with an excellent pedagogical introduction to the physics and methods and formalism of supersymmetry, by S Martin, which is accessible to anyone with a basic knowledge of the Standard Model of particle physics. Next is an overview of open questions by K Dienes and C Kolda, followed by chapters on topics ranging from how to detect superpartners to connections with Planck scale theories, by leading experts.This invaluable book will allow any interested physicist to understand the coming experimental and theoretical progress in supersymmetry, and will also help students and workers to quickly learn new aspects of supersymmetry they want to pursue.

The Higgs Hunter's Guide

The Higgs Hunter's Guide PDF Author: John F. Gunion
Publisher: CRC Press
ISBN: 0429976070
Category : Science
Languages : en
Pages : 333

Get Book Here

Book Description
The Higgs Hunter's Guide is a definitive and comprehensive guide to the physics of Higgs bosons. In particular, it discusses the extended Higgs sectors required by those recent theoretical approaches that go beyond the Standard Model, including supersymmetry and superstring-inspired models.

Colliders and Neutrinos

Colliders and Neutrinos PDF Author: Rabindra Nath Mohapatra
Publisher: World Scientific
ISBN: 9812819258
Category : Science
Languages : en
Pages : 713

Get Book Here

Book Description
Every night, William thinks up reasons why he shouldn't go to bed. One evening there is a very BIG reason -- someone has come to visit William. Will his parents believe him? Does William ever get to sleep? This delightful story about that tricky time at the end of every young family's day is guaranteed to make both child and parent smile!

Perspectives on Lhc Physics

Perspectives on Lhc Physics PDF Author: G. L. Kane
Publisher: World Scientific
ISBN: 9812779760
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
The Large Hadron Collider (LHC), located at CERN, Geneva, Switzerland, is the world's largest and highest energy and highest intensity particle accelerator. Here is a timely book with several perspectives on the hoped-for discoveries from the LHC.This book provides an overview on the techniques that will be crucial for finding new physics at the LHC, as well as perspectives on the importance and implications of the discoveries. Among the accomplished contributors to this book are leaders and visionaries in the field of particle physics beyond the Standard Model, including two Nobel Laureates (Steven Weinberg and Frank Wilczek), and presumably some future Nobel Laureates, plus top younger theorists and experimenters. With its blend of popular and technical contents, the book will have wide appeal, not only to physical scientists but also to those in related fields.

The God Particle

The God Particle PDF Author: Leon M. Lederman
Publisher: Houghton Mifflin Harcourt
ISBN: 9780618711680
Category : Science
Languages : en
Pages : 452

Get Book Here

Book Description
A fascinating tour of particle physics from Nobel Prize winner Leon Lederman. At the root of particle physics is an invincible sense of curiosity. Leon Lederman embraces this spirit of inquiry as he moves from the Greeks' earliest scientific observations to Einstein and beyond to chart this unique arm of scientific study. His survey concludes with the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe, quarks and all--it's the dogged pursuit of this almost mystical entity that inspires Lederman's witty and accessible history.

Reheating After Inflation

Reheating After Inflation PDF Author: Kaloian Lozanov
Publisher: Springer
ISBN: 9783030568092
Category : Science
Languages : en
Pages : 92

Get Book Here

Book Description
This book provides a pedagogical introduction to the rapidly growing field of reheating after inflation. It begins with a brief review of the inflationary paradigm and a motivation for why the reheating of the universe is an integral part of inflationary cosmology. It then goes on to survey different aspects of reheating in a chronological manner, starting from the young, empty and cold universe at the end of inflation, and going all the way to the hot and thermal universe at the beginning of the Big Bang nucleosynthesis epoch. Different particle production mechanisms are considered with a focus on the non-perturbative excitation of scalar fields at the beginning of reheating (fermionic and vector fields are also discussed). This is followed by a review of the subsequent non-linear dynamical processes, such as soliton formation and relativistic turbulence. Various thermalization processes are also discussed. High energy physics embeddings of phenomenological models as well as observational implications of reheating such as gravitational waves generation and imprints on the cosmic microwave background are also covered.