Probably Approximately Correct

Probably Approximately Correct PDF Author: Leslie Valiant
Publisher: Basic Books (AZ)
ISBN: 0465032710
Category : Science
Languages : en
Pages : 210

Get Book Here

Book Description
Presenting a theory of the theoryless, a computer scientist provides a model of how effective behavior can be learned even in a world as complex as our own, shedding new light on human nature.

Probably Approximately Correct

Probably Approximately Correct PDF Author: Leslie Valiant
Publisher: Basic Books (AZ)
ISBN: 0465032710
Category : Science
Languages : en
Pages : 210

Get Book Here

Book Description
Presenting a theory of the theoryless, a computer scientist provides a model of how effective behavior can be learned even in a world as complex as our own, shedding new light on human nature.

Probably Approximately Correct

Probably Approximately Correct PDF Author: Leslie Valiant
Publisher: Basic Books
ISBN: 0465037909
Category : Science
Languages : en
Pages : 210

Get Book Here

Book Description
From a leading computer scientist, a unifying theory that will revolutionize our understanding of how life evolves and learns. How does life prosper in a complex and erratic world? While we know that nature follows patterns -- such as the law of gravity -- our everyday lives are beyond what known science can predict. We nevertheless muddle through even in the absence of theories of how to act. But how do we do it? In Probably Approximately Correct, computer scientist Leslie Valiant presents a masterful synthesis of learning and evolution to show how both individually and collectively we not only survive, but prosper in a world as complex as our own. The key is "probably approximately correct" algorithms, a concept Valiant developed to explain how effective behavior can be learned. The model shows that pragmatically coping with a problem can provide a satisfactory solution in the absence of any theory of the problem. After all, finding a mate does not require a theory of mating. Valiant's theory reveals the shared computational nature of evolution and learning, and sheds light on perennial questions such as nature versus nurture and the limits of artificial intelligence. Offering a powerful and elegant model that encompasses life's complexity, Probably Approximately Correct has profound implications for how we think about behavior, cognition, biological evolution, and the possibilities and limits of human and machine intelligence.

Probably Approximately Correct

Probably Approximately Correct PDF Author: Leslie Valiant
Publisher: Hachette UK
ISBN: 0465037909
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
From a leading computer scientist, a unifying theory that will revolutionize our understanding of how life evolves and learns. How does life prosper in a complex and erratic world? While we know that nature follows patterns -- such as the law of gravity -- our everyday lives are beyond what known science can predict. We nevertheless muddle through even in the absence of theories of how to act. But how do we do it? In Probably Approximately Correct, computer scientist Leslie Valiant presents a masterful synthesis of learning and evolution to show how both individually and collectively we not only survive, but prosper in a world as complex as our own. The key is "probably approximately correct" algorithms, a concept Valiant developed to explain how effective behavior can be learned. The model shows that pragmatically coping with a problem can provide a satisfactory solution in the absence of any theory of the problem. After all, finding a mate does not require a theory of mating. Valiant's theory reveals the shared computational nature of evolution and learning, and sheds light on perennial questions such as nature versus nurture and the limits of artificial intelligence. Offering a powerful and elegant model that encompasses life's complexity, Probably Approximately Correct has profound implications for how we think about behavior, cognition, biological evolution, and the possibilities and limits of human and machine intelligence.

An Introduction to Computational Learning Theory

An Introduction to Computational Learning Theory PDF Author: Michael J. Kearns
Publisher: MIT Press
ISBN: 9780262111935
Category : Computers
Languages : en
Pages : 230

Get Book Here

Book Description
Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Computational learning theory is a new and rapidly expanding area of research that examines formal models of induction with the goals of discovering the common methods underlying efficient learning algorithms and identifying the computational impediments to learning. Each topic in the book has been chosen to elucidate a general principle, which is explored in a precise formal setting. Intuition has been emphasized in the presentation to make the material accessible to the nontheoretician while still providing precise arguments for the specialist. This balance is the result of new proofs of established theorems, and new presentations of the standard proofs. The topics covered include the motivation, definitions, and fundamental results, both positive and negative, for the widely studied L. G. Valiant model of Probably Approximately Correct Learning; Occam's Razor, which formalizes a relationship between learning and data compression; the Vapnik-Chervonenkis dimension; the equivalence of weak and strong learning; efficient learning in the presence of noise by the method of statistical queries; relationships between learning and cryptography, and the resulting computational limitations on efficient learning; reducibility between learning problems; and algorithms for learning finite automata from active experimentation.

Understanding Machine Learning

Understanding Machine Learning PDF Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
ISBN: 1107057132
Category : Computers
Languages : en
Pages : 415

Get Book Here

Book Description
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Circuits of the Mind

Circuits of the Mind PDF Author: Leslie G. Valiant
Publisher: Oxford University Press, USA
ISBN: 9780195126686
Category : Computers
Languages : en
Pages : 260

Get Book Here

Book Description
While embracing the now classical theories of McCulloch and Pitts, the neuroidal model also accommodates state information in the neurons, more flexible timing mechanisms, a variety of assumptions about interconnectivity, and the possibility that different brain areas perform specialized functions. Programmable so that a wide range of algorithmic theories can be described and evaluated, the model provides a concrete computational language and a unified framework in which diverse cognitive phenomena - such as memory, learning, and reasoning - can be systematically and concurrently analyzed. Requiring no specialized knowledge, Circuits of the Mind masterfully offers an exciting new approach to brain science for students and researchers in computer science, neurobiology, neuroscience, artificial intelligence, and cognitive science.

Foundations of Machine Learning, second edition

Foundations of Machine Learning, second edition PDF Author: Mehryar Mohri
Publisher: MIT Press
ISBN: 0262351366
Category : Computers
Languages : en
Pages : 505

Get Book Here

Book Description
A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

Introduction to Machine Learning

Introduction to Machine Learning PDF Author: Ethem Alpaydin
Publisher: MIT Press
ISBN: 0262028182
Category : Computers
Languages : en
Pages : 639

Get Book Here

Book Description
Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.

Encyclopedia of Algorithms

Encyclopedia of Algorithms PDF Author: Ming-Yang Kao
Publisher: Springer Science & Business Media
ISBN: 0387307702
Category : Computers
Languages : en
Pages : 1200

Get Book Here

Book Description
One of Springer’s renowned Major Reference Works, this awesome achievement provides a comprehensive set of solutions to important algorithmic problems for students and researchers interested in quickly locating useful information. This first edition of the reference focuses on high-impact solutions from the most recent decade, while later editions will widen the scope of the work. All entries have been written by experts, while links to Internet sites that outline their research work are provided. The entries have all been peer-reviewed. This defining reference is published both in print and on line.

Sparse Modeling

Sparse Modeling PDF Author: Irina Rish
Publisher: CRC Press
ISBN: 1439828695
Category : Business & Economics
Languages : en
Pages : 255

Get Book Here

Book Description
Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing. Sparse Modeling: Theory, Algorithms, and Applications provides an introduction to the growing field of sparse modeling, including application examples, problem formulations that yield sparse solutions, algorithms for finding such solutions, and recent theoretical results on sparse recovery. The book gets you up to speed on the latest sparsity-related developments and will motivate you to continue learning about the field. The authors first present motivating examples and a high-level survey of key recent developments in sparse modeling. The book then describes optimization problems involving commonly used sparsity-enforcing tools, presents essential theoretical results, and discusses several state-of-the-art algorithms for finding sparse solutions. The authors go on to address a variety of sparse recovery problems that extend the basic formulation to more sophisticated forms of structured sparsity and to different loss functions. They also examine a particular class of sparse graphical models and cover dictionary learning and sparse matrix factorizations.