Author: Peter Whittle
Publisher: Springer Science & Business Media
ISBN: 9780387977645
Category : Mathematics
Languages : en
Pages : 324
Book Description
A textbook for an introductory undergraduate course in probability theory, first published in 1970, and revised in 1976. The novelty of the approach is its basis on the subject's expectation rather than on probability measures. Assumes a fair degree of mathematical sophistication. Annotation copyrighted by Book News, Inc., Portland, OR
Probability Via Expectation
Author: Peter Whittle
Publisher: Springer Science & Business Media
ISBN: 9780387977645
Category : Mathematics
Languages : en
Pages : 324
Book Description
A textbook for an introductory undergraduate course in probability theory, first published in 1970, and revised in 1976. The novelty of the approach is its basis on the subject's expectation rather than on probability measures. Assumes a fair degree of mathematical sophistication. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: Springer Science & Business Media
ISBN: 9780387977645
Category : Mathematics
Languages : en
Pages : 324
Book Description
A textbook for an introductory undergraduate course in probability theory, first published in 1970, and revised in 1976. The novelty of the approach is its basis on the subject's expectation rather than on probability measures. Assumes a fair degree of mathematical sophistication. Annotation copyrighted by Book News, Inc., Portland, OR
Probability via Expectation
Author: Peter Whittle
Publisher: Springer Science & Business Media
ISBN: 1461205093
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book has exerted a continuing appeal since its original publication in 1970. It develops the theory of probability from axioms on the expectation functional rather than on probability measure, demonstrates that the standard theory unrolls more naturally and economically this way, and that applications of real interest can be addressed almost immediately. A secondary aim of the original text was to introduce fresh examples and convincing applications, and that aim is continued in this edition, a general revision plus the addition of chapters giving an economical introduction to dynamic programming, that is then applied to the allocation problems represented by portfolio selection and the multi-armed bandit. The investment theme is continued with a critical investigation of the concept of risk-free'trading and the associated Black-Sholes formula, while another new chapter develops the basic ideas of large deviations. The book may be seen as an introduction to probability for students with a basic mathematical facility, covering the standard material, but different in that it is unified by its theme and covers an unusual range of modern applications.
Publisher: Springer Science & Business Media
ISBN: 1461205093
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book has exerted a continuing appeal since its original publication in 1970. It develops the theory of probability from axioms on the expectation functional rather than on probability measure, demonstrates that the standard theory unrolls more naturally and economically this way, and that applications of real interest can be addressed almost immediately. A secondary aim of the original text was to introduce fresh examples and convincing applications, and that aim is continued in this edition, a general revision plus the addition of chapters giving an economical introduction to dynamic programming, that is then applied to the allocation problems represented by portfolio selection and the multi-armed bandit. The investment theme is continued with a critical investigation of the concept of risk-free'trading and the associated Black-Sholes formula, while another new chapter develops the basic ideas of large deviations. The book may be seen as an introduction to probability for students with a basic mathematical facility, covering the standard material, but different in that it is unified by its theme and covers an unusual range of modern applications.
Probability Through Problems
Author: Marek Capinski
Publisher: Springer Science & Business Media
ISBN: 0387216596
Category : Mathematics
Languages : en
Pages : 262
Book Description
This book of problems is designed to challenge students learning probability. Each chapter is divided into three parts: Problems, Hints, and Solutions. All Problems sections include expository material, making the book self-contained. Definitions and statements of important results are interlaced with relevant problems. The only prerequisite is basic algebra and calculus.
Publisher: Springer Science & Business Media
ISBN: 0387216596
Category : Mathematics
Languages : en
Pages : 262
Book Description
This book of problems is designed to challenge students learning probability. Each chapter is divided into three parts: Problems, Hints, and Solutions. All Problems sections include expository material, making the book self-contained. Definitions and statements of important results are interlaced with relevant problems. The only prerequisite is basic algebra and calculus.
Probability and Conditional Expectation
Author: Rolf Steyer
Publisher: John Wiley & Sons
ISBN: 1119243483
Category : Mathematics
Languages : en
Pages : 728
Book Description
Probability and Conditional Expectations bridges the gap between books on probability theory and statistics by providing the probabilistic concepts estimated and tested in analysis of variance, regression analysis, factor analysis, structural equation modeling, hierarchical linear models and analysis of qualitative data. The authors emphasize the theory of conditional expectations that is also fundamental to conditional independence and conditional distributions. Probability and Conditional Expectations Presents a rigorous and detailed mathematical treatment of probability theory focusing on concepts that are fundamental to understand what we are estimating in applied statistics. Explores the basics of random variables along with extensive coverage of measurable functions and integration. Extensively treats conditional expectations also with respect to a conditional probability measure and the concept of conditional effect functions, which are crucial in the analysis of causal effects. Is illustrated throughout with simple examples, numerous exercises and detailed solutions. Provides website links to further resources including videos of courses delivered by the authors as well as R code exercises to help illustrate the theory presented throughout the book.
Publisher: John Wiley & Sons
ISBN: 1119243483
Category : Mathematics
Languages : en
Pages : 728
Book Description
Probability and Conditional Expectations bridges the gap between books on probability theory and statistics by providing the probabilistic concepts estimated and tested in analysis of variance, regression analysis, factor analysis, structural equation modeling, hierarchical linear models and analysis of qualitative data. The authors emphasize the theory of conditional expectations that is also fundamental to conditional independence and conditional distributions. Probability and Conditional Expectations Presents a rigorous and detailed mathematical treatment of probability theory focusing on concepts that are fundamental to understand what we are estimating in applied statistics. Explores the basics of random variables along with extensive coverage of measurable functions and integration. Extensively treats conditional expectations also with respect to a conditional probability measure and the concept of conditional effect functions, which are crucial in the analysis of causal effects. Is illustrated throughout with simple examples, numerous exercises and detailed solutions. Provides website links to further resources including videos of courses delivered by the authors as well as R code exercises to help illustrate the theory presented throughout the book.
Probability Theory and Stochastic Processes
Author: Pierre Brémaud
Publisher: Springer Nature
ISBN: 3030401839
Category : Mathematics
Languages : en
Pages : 717
Book Description
The ultimate objective of this book is to present a panoramic view of the main stochastic processes which have an impact on applications, with complete proofs and exercises. Random processes play a central role in the applied sciences, including operations research, insurance, finance, biology, physics, computer and communications networks, and signal processing. In order to help the reader to reach a level of technical autonomy sufficient to understand the presented models, this book includes a reasonable dose of probability theory. On the other hand, the study of stochastic processes gives an opportunity to apply the main theoretical results of probability theory beyond classroom examples and in a non-trivial manner that makes this discipline look more attractive to the applications-oriented student. One can distinguish three parts of this book. The first four chapters are about probability theory, Chapters 5 to 8 concern random sequences, or discrete-time stochastic processes, and the rest of the book focuses on stochastic processes and point processes. There is sufficient modularity for the instructor or the self-teaching reader to design a course or a study program adapted to her/his specific needs. This book is in a large measure self-contained.
Publisher: Springer Nature
ISBN: 3030401839
Category : Mathematics
Languages : en
Pages : 717
Book Description
The ultimate objective of this book is to present a panoramic view of the main stochastic processes which have an impact on applications, with complete proofs and exercises. Random processes play a central role in the applied sciences, including operations research, insurance, finance, biology, physics, computer and communications networks, and signal processing. In order to help the reader to reach a level of technical autonomy sufficient to understand the presented models, this book includes a reasonable dose of probability theory. On the other hand, the study of stochastic processes gives an opportunity to apply the main theoretical results of probability theory beyond classroom examples and in a non-trivial manner that makes this discipline look more attractive to the applications-oriented student. One can distinguish three parts of this book. The first four chapters are about probability theory, Chapters 5 to 8 concern random sequences, or discrete-time stochastic processes, and the rest of the book focuses on stochastic processes and point processes. There is sufficient modularity for the instructor or the self-teaching reader to design a course or a study program adapted to her/his specific needs. This book is in a large measure self-contained.
Introduction to Probability
Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Knowing the Odds
Author: John B. Walsh
Publisher: American Mathematical Society
ISBN: 1470473879
Category : Mathematics
Languages : en
Pages : 439
Book Description
John Walsh, one of the great masters of the subject, has written a superb book on probability. It covers at a leisurely pace all the important topics that students need to know, and provides excellent examples. I regret his book was not available when I taught such a course myself, a few years ago. —Ioannis Karatzas, Columbia University In this wonderful book, John Walsh presents a panoramic view of Probability Theory, starting from basic facts on mean, median and mode, continuing with an excellent account of Markov chains and martingales, and culminating with Brownian motion. Throughout, the author's personal style is apparent; he manages to combine rigor with an emphasis on the key ideas so the reader never loses sight of the forest by being surrounded by too many trees. As noted in the preface, “To teach a course with pleasure, one should learn at the same time.” Indeed, almost all instructors will learn something new from the book (e.g. the potential-theoretic proof of Skorokhod embedding) and at the same time, it is attractive and approachable for students. —Yuval Peres, Microsoft With many examples in each section that enhance the presentation, this book is a welcome addition to the collection of books that serve the needs of advanced undergraduate as well as first year graduate students. The pace is leisurely which makes it more attractive as a text. —Srinivasa Varadhan, Courant Institute, New York This book covers in a leisurely manner all the standard material that one would want in a full year probability course with a slant towards applications in financial analysis at the graduate or senior undergraduate honors level. It contains a fair amount of measure theory and real analysis built in but it introduces sigma-fields, measure theory, and expectation in an especially elementary and intuitive way. A large variety of examples and exercises in each chapter enrich the presentation in the text.
Publisher: American Mathematical Society
ISBN: 1470473879
Category : Mathematics
Languages : en
Pages : 439
Book Description
John Walsh, one of the great masters of the subject, has written a superb book on probability. It covers at a leisurely pace all the important topics that students need to know, and provides excellent examples. I regret his book was not available when I taught such a course myself, a few years ago. —Ioannis Karatzas, Columbia University In this wonderful book, John Walsh presents a panoramic view of Probability Theory, starting from basic facts on mean, median and mode, continuing with an excellent account of Markov chains and martingales, and culminating with Brownian motion. Throughout, the author's personal style is apparent; he manages to combine rigor with an emphasis on the key ideas so the reader never loses sight of the forest by being surrounded by too many trees. As noted in the preface, “To teach a course with pleasure, one should learn at the same time.” Indeed, almost all instructors will learn something new from the book (e.g. the potential-theoretic proof of Skorokhod embedding) and at the same time, it is attractive and approachable for students. —Yuval Peres, Microsoft With many examples in each section that enhance the presentation, this book is a welcome addition to the collection of books that serve the needs of advanced undergraduate as well as first year graduate students. The pace is leisurely which makes it more attractive as a text. —Srinivasa Varadhan, Courant Institute, New York This book covers in a leisurely manner all the standard material that one would want in a full year probability course with a slant towards applications in financial analysis at the graduate or senior undergraduate honors level. It contains a fair amount of measure theory and real analysis built in but it introduces sigma-fields, measure theory, and expectation in an especially elementary and intuitive way. A large variety of examples and exercises in each chapter enrich the presentation in the text.
Introduction to Probability
Author: Joseph K. Blitzstein
Publisher: CRC Press
ISBN: 1466575573
Category : Mathematics
Languages : en
Pages : 599
Book Description
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
Publisher: CRC Press
ISBN: 1466575573
Category : Mathematics
Languages : en
Pages : 599
Book Description
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Probability with Martingales
Author: David Williams
Publisher: Cambridge University Press
ISBN: 9780521406055
Category : Mathematics
Languages : en
Pages : 274
Book Description
This is a masterly introduction to the modern, and rigorous, theory of probability. The author emphasises martingales and develops all the necessary measure theory.
Publisher: Cambridge University Press
ISBN: 9780521406055
Category : Mathematics
Languages : en
Pages : 274
Book Description
This is a masterly introduction to the modern, and rigorous, theory of probability. The author emphasises martingales and develops all the necessary measure theory.