Probability Models for Computer Science

Probability Models for Computer Science PDF Author: Sheldon M. Ross
Publisher: Taylor & Francis US
ISBN: 9780125980517
Category : Computers
Languages : en
Pages : 304

Get Book Here

Book Description
The role of probability in computer science has been growing for years and, in lieu of a tailored textbook, many courses have employed a variety of similar, but not entirely applicable, alternatives. To meet the needs of the computer science graduate student (and the advanced undergraduate), best-selling author Sheldon Ross has developed the premier probability text for aspiring computer scientists involved in computer simulation and modeling. The math is precise and easily understood. As with his other texts, Sheldon Ross presents very clear explanations of concepts and covers those probability models that are most in demand by, and applicable to, computer science and related majors and practitioners. Many interesting examples and exercises have been chosen to illuminate the techniques presented Examples relating to bin packing, sorting algorithms, the find algorithm, random graphs, self-organising list problems, the maximum weighted independent set problem, hashing, probabilistic verification, max SAT problem, queuing networks, distributed workload models, and many othersMany interesting examples and exercises have been chosen to illuminate the techniques presented

Probability Models for Computer Science

Probability Models for Computer Science PDF Author: Sheldon M. Ross
Publisher: Taylor & Francis US
ISBN: 9780125980517
Category : Computers
Languages : en
Pages : 304

Get Book Here

Book Description
The role of probability in computer science has been growing for years and, in lieu of a tailored textbook, many courses have employed a variety of similar, but not entirely applicable, alternatives. To meet the needs of the computer science graduate student (and the advanced undergraduate), best-selling author Sheldon Ross has developed the premier probability text for aspiring computer scientists involved in computer simulation and modeling. The math is precise and easily understood. As with his other texts, Sheldon Ross presents very clear explanations of concepts and covers those probability models that are most in demand by, and applicable to, computer science and related majors and practitioners. Many interesting examples and exercises have been chosen to illuminate the techniques presented Examples relating to bin packing, sorting algorithms, the find algorithm, random graphs, self-organising list problems, the maximum weighted independent set problem, hashing, probabilistic verification, max SAT problem, queuing networks, distributed workload models, and many othersMany interesting examples and exercises have been chosen to illuminate the techniques presented

Introduction to Probability Models

Introduction to Probability Models PDF Author: Sheldon M. Ross
Publisher: Academic Press
ISBN: 0123756871
Category : Mathematics
Languages : en
Pages : 801

Get Book Here

Book Description
Introduction to Probability Models, Tenth Edition, provides an introduction to elementary probability theory and stochastic processes. There are two approaches to the study of probability theory. One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text. The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students. This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes. New to this Edition: - 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains - Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams - Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bank - Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: - Superior writing style - Excellent exercises and examples covering the wide breadth of coverage of probability topics - Real-world applications in engineering, science, business and economics

Probability Models in Engineering and Science

Probability Models in Engineering and Science PDF Author: Haym Benaroya
Publisher: CRC Press
ISBN: 9780824723156
Category : Science
Languages : en
Pages : 770

Get Book Here

Book Description
Certainty exists only in idealized models. Viewed as the quantification of uncertainties, probabilitry and random processes play a significant role in modern engineering, particularly in areas such as structural dynamics. Unlike this book, however, few texts develop applied probability in the practical manner appropriate for engineers. Probability Models in Engineering and Science provides a comprehensive, self-contained introduction to applied probabilistic modeling. The first four chapters present basic concepts in probability and random variables, and while doing so, develop methods for static problems. The remaining chapters address dynamic problems, where time is a critical parameter in the randomness. Highlights of the presentation include numerous examples and illustrations and an engaging, human connection to the subject, achieved through short biographies of some of the key people in the field. End-of-chapter problems help solidify understanding and footnotes to the literature expand the discussions and introduce relevant journals and texts. This book builds the background today's engineers need to deal explicitly with the scatter observed in experimental data and with intricate dynamic behavior. Designed for undergraduate and graduate coursework as well as self-study, the text's coverage of theory, approximation methods, and numerical methods make it equally valuable to practitioners.

Introduction to Probability Models

Introduction to Probability Models PDF Author: Sheldon M. Ross
Publisher: Elsevier
ISBN: 0123736358
Category : Probabilities
Languages : en
Pages : 801

Get Book Here

Book Description
Rosss classic bestseller has been used extensively by professionals and as the primary text for a first undergraduate course in applied probability. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries.

Probability and Statistics for Computer Science

Probability and Statistics for Computer Science PDF Author: David Forsyth
Publisher: Springer
ISBN: 3319644106
Category : Computers
Languages : en
Pages : 374

Get Book Here

Book Description
This textbook is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning. With careful treatment of topics that fill the curricular needs for the course, Probability and Statistics for Computer Science features: • A treatment of random variables and expectations dealing primarily with the discrete case. • A practical treatment of simulation, showing how many interesting probabilities and expectations can be extracted, with particular emphasis on Markov chains. • A clear but crisp account of simple point inference strategies (maximum likelihood; Bayesian inference) in simple contexts. This is extended to cover some confidence intervals, samples and populations for random sampling with replacement, and the simplest hypothesis testing. • A chapter dealing with classification, explaining why it’s useful; how to train SVM classifiers with stochastic gradient descent; and how to use implementations of more advanced methods such as random forests and nearest neighbors. • A chapter dealing with regression, explaining how to set up, use and understand linear regression and nearest neighbors regression in practical problems. • A chapter dealing with principal components analysis, developing intuition carefully, and including numerous practical examples. There is a brief description of multivariate scaling via principal coordinate analysis. • A chapter dealing with clustering via agglomerative methods and k-means, showing how to build vector quantized features for complex signals. Illustrated throughout, each main chapter includes many worked examples and other pedagogical elements such as boxed Procedures, Definitions, Useful Facts, and Remember This (short tips). Problems and Programming Exercises are at the end of each chapter, with a summary of what the reader should know. Instructor resources include a full set of model solutions for all problems, and an Instructor's Manual with accompanying presentation slides.

Introduction to Probability Models, Student Solutions Manual (e-only)

Introduction to Probability Models, Student Solutions Manual (e-only) PDF Author: Sheldon M. Ross
Publisher: Academic Press
ISBN: 0123814367
Category : Mathematics
Languages : en
Pages : 59

Get Book Here

Book Description
Introduction to Probability Models, Student Solutions Manual (e-only)

Probability and Statistics with Reliability, Queuing, and Computer Science Applications

Probability and Statistics with Reliability, Queuing, and Computer Science Applications PDF Author: Kishor S. Trivedi
Publisher: John Wiley & Sons
ISBN: 0471460818
Category : Computers
Languages : en
Pages : 881

Get Book Here

Book Description
An accessible introduction to probability, stochastic processes, and statistics for computer science and engineering applications Second edition now also available in Paperback. This updated and revised edition of the popular classic first edition relates fundamental concepts in probability and statistics to the computer sciences and engineering. The author uses Markov chains and other statistical tools to illustrate processes in reliability of computer systems and networks, fault tolerance, and performance. This edition features an entirely new section on stochastic Petri nets—as well as new sections on system availability modeling, wireless system modeling, numerical solution techniques for Markov chains, and software reliability modeling, among other subjects. Extensive revisions take new developments in solution techniques and applications into account and bring this work totally up to date. It includes more than 200 worked examples and self-study exercises for each section. Probability and Statistics with Reliability, Queuing and Computer Science Applications, Second Edition offers a comprehensive introduction to probability, stochastic processes, and statistics for students of computer science, electrical and computer engineering, and applied mathematics. Its wealth of practical examples and up-to-date information makes it an excellent resource for practitioners as well. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Probability and Statistics for Computer Science

Probability and Statistics for Computer Science PDF Author: James L. Johnson
Publisher: John Wiley & Sons
ISBN: 1118165969
Category : Mathematics
Languages : en
Pages : 764

Get Book Here

Book Description
Comprehensive and thorough development of both probability and statistics for serious computer scientists; goal-oriented: "to present the mathematical analysis underlying probability results" Special emphases on simulation and discrete decision theory Mathematically-rich, but self-contained text, at a gentle pace Review of calculus and linear algebra in an appendix Mathematical interludes (in each chapter) which examine mathematical techniques in the context of probabilistic or statistical importance Numerous section exercises, summaries, historical notes, and Further Readings for reinforcement of content

Probability Models

Probability Models PDF Author: John Haigh
Publisher: Springer Science & Business Media
ISBN: 144715343X
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
The purpose of this book is to provide a sound introduction to the study of real-world phenomena that possess random variation. It describes how to set up and analyse models of real-life phenomena that involve elements of chance. Motivation comes from everyday experiences of probability, such as that of a dice or cards, the idea of fairness in games of chance, and the random ways in which, say, birthdays are shared or particular events arise. Applications include branching processes, random walks, Markov chains, queues, renewal theory, and Brownian motion. This textbook contains many worked examples and several chapters have been updated and expanded for the second edition. Some mathematical knowledge is assumed. The reader should have the ability to work with unions, intersections and complements of sets; a good facility with calculus, including integration, sequences and series; and appreciation of the logical development of an argument. Probability Models is designed to aid students studying probability as part of an undergraduate course on mathematics or mathematics and statistics.

Introduction to Probability

Introduction to Probability PDF Author: Narayanaswamy Balakrishnan
Publisher: John Wiley & Sons
ISBN: 1118548558
Category : Mathematics
Languages : en
Pages : 548

Get Book Here

Book Description
INTRODUCTION TO PROBABILITY Discover practical models and real-world applications of multivariate models useful in engineering, business, and related disciplines In Introduction to Probability: Multivariate Models and Applications, a team of distinguished researchers delivers a comprehensive exploration of the concepts, methods, and results in multivariate distributions and models. Intended for use in a second course in probability, the material is largely self-contained, with some knowledge of basic probability theory and univariate distributions as the only prerequisite. This textbook is intended as the sequel to Introduction to Probability: Models and Applications. Each chapter begins with a brief historical account of some of the pioneers in probability who made significant contributions to the field. It goes on to describe and explain a critical concept or method in multivariate models and closes with two collections of exercises designed to test basic and advanced understanding of the theory. A wide range of topics are covered, including joint distributions for two or more random variables, independence of two or more variables, transformations of variables, covariance and correlation, a presentation of the most important multivariate distributions, generating functions and limit theorems. This important text: Includes classroom-tested problems and solutions to probability exercises Highlights real-world exercises designed to make clear the concepts presented Uses Mathematica software to illustrate the text’s computer exercises Features applications representing worldwide situations and processes Offers two types of self-assessment exercises at the end of each chapter, so that students may review the material in that chapter and monitor their progress Perfect for students majoring in statistics, engineering, business, psychology, operations research and mathematics taking a second course in probability, Introduction to Probability: Multivariate Models and Applications is also an indispensable resource for anyone who is required to use multivariate distributions to model the uncertainty associated with random phenomena.