Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics

Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics PDF Author: Christine Sinoquet
Publisher: Oxford University Press, USA
ISBN: 0198709021
Category : Mathematics
Languages : en
Pages : 483

Get Book Here

Book Description
At the crossroads between statistics and machine learning, probabilistic graphical models (PGMs) provide a powerful formal framework to model complex data. An expanding volume of biological data of various types, the so-called 'omics', is in need of accurate and efficient methods for modelling and PGMs are expected to have a prominent role to play.

Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics

Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics PDF Author: Christine Sinoquet
Publisher: Oxford University Press, USA
ISBN: 0198709021
Category : Mathematics
Languages : en
Pages : 483

Get Book Here

Book Description
At the crossroads between statistics and machine learning, probabilistic graphical models (PGMs) provide a powerful formal framework to model complex data. An expanding volume of biological data of various types, the so-called 'omics', is in need of accurate and efficient methods for modelling and PGMs are expected to have a prominent role to play.

Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics

Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics PDF Author: Raphaƫl Mourad
Publisher: OUP Oxford
ISBN: 0191019194
Category : Science
Languages : en
Pages : 483

Get Book Here

Book Description
Nowadays bioinformaticians and geneticists are faced with myriad high-throughput data usually presenting the characteristics of uncertainty, high dimensionality and large complexity. These data will only allow insights into this wealth of so-called 'omics' data if represented by flexible and scalable models, prior to any further analysis. At the interface between statistics and machine learning, probabilistic graphical models (PGMs) represent a powerful formalism to discover complex networks of relations. These models are also amenable to incorporating a priori biological information. Network reconstruction from gene expression data represents perhaps the most emblematic area of research where PGMs have been successfully applied. However these models have also created renewed interest in genetics in the broad sense, in particular regarding association genetics, causality discovery, prediction of outcomes, detection of copy number variations, and epigenetics. This book provides an overview of the applications of PGMs to genetics, genomics and postgenomics to meet this increased interest. A salient feature of bioinformatics, interdisciplinarity, reaches its limit when an intricate cooperation between domain specialists is requested. Currently, few people are specialists in the design of advanced methods using probabilistic graphical models for postgenomics or genetics. This book deciphers such models so that their perceived difficulty no longer hinders their use and focuses on fifteen illustrations showing the mechanisms behind the models. Probabilistic Graphical Models for Genetics, Genomics and Postgenomics covers six main themes: (1) Gene network inference (2) Causality discovery (3) Association genetics (4) Epigenetics (5) Detection of copy number variations (6) Prediction of outcomes from high-dimensional genomic data. Written by leading international experts, this is a collection of the most advanced work at the crossroads of probabilistic graphical models and genetics, genomics, and postgenomics. The self-contained chapters provide an enlightened account of the pros and cons of applying these powerful techniques.

Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics

Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics PDF Author: Christine Sinoquet
Publisher:
ISBN: 9780191779619
Category : Genetics
Languages : en
Pages : 449

Get Book Here

Book Description
At the crossroads between statistics and machine learning, probabilistic graphical models (PGMs) provide a powerful formal framework to model complex data. An expanding volume of biological data of various types, the so-called 'omics', is in need of accurate and efficient methods for modelling and PGMs are expected to have a prominent role to play. This book provides an overview of the applications of PGMs to genetics, genomics and postgenomics to meet this increased interest.

Big Data Analytics in Genomics

Big Data Analytics in Genomics PDF Author: Ka-Chun Wong
Publisher: Springer
ISBN: 3319412795
Category : Computers
Languages : en
Pages : 426

Get Book Here

Book Description
This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.

Probabilistic Graphical Models

Probabilistic Graphical Models PDF Author: Linda C. van der Gaag
Publisher: Springer
ISBN: 3319114336
Category : Computers
Languages : en
Pages : 609

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 7th International Workshop on Probabilistic Graphical Models, PGM 2014, held in Utrecht, The Netherlands, in September 2014. The 38 revised full papers presented in this book were carefully reviewed and selected from 44 submissions. The papers cover all aspects of graphical models for probabilistic reasoning, decision making, and learning.

Bayesian Networks

Bayesian Networks PDF Author: Marco Scutari
Publisher: CRC Press
ISBN: 1000410382
Category : Computers
Languages : en
Pages : 275

Get Book Here

Book Description
Explains the material step-by-step starting from meaningful examples Steps detailed with R code in the spirit of reproducible research Real world data analyses from a Science paper reproduced and explained in detail Examples span a variety of fields across social and life sciences Overview of available software in and outside R

Algebraic Statistics

Algebraic Statistics PDF Author: Seth Sullivant
Publisher: American Mathematical Society
ISBN: 1470475103
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.

Enhanced Quality of Life and Smart Living

Enhanced Quality of Life and Smart Living PDF Author: Mounir Mokhtari
Publisher: Springer
ISBN: 3319661884
Category : Computers
Languages : en
Pages : 277

Get Book Here

Book Description
This book constitutes the proceedings of the 15th International Conference on Smart Homes and Health Telematics, ICOST 2017, held in Paris, France, in August 2017. The 18 regular papers, 5 short papers together with 2 invited talks included in this volume were carefully reviewed and selected from numerous submissions. The conference features a dynamic program incorporating a range of design, development, deployment and evaluation of Smart Urban Environments, Assistive Technologies, Chronic Disease Management, Coaching and Health Telematics systems.

Systems Biology in Animal Production and Health, Vol. 1

Systems Biology in Animal Production and Health, Vol. 1 PDF Author: Haja N. Kadarmideen
Publisher: Springer
ISBN: 3319433350
Category : Science
Languages : en
Pages : 161

Get Book Here

Book Description
This two-volume work provides an overview on various state of the art experimental and statistical methods, modeling approaches and software tools that are available to generate, integrate and analyze multi-omics datasets in order to detect biomarkers, genetic markers and potential causal genes for improved animal production and health. The book will contain online resources where additional data and programs can be accessed. Some chapters also come with computer programming codes and example datasets to provide readers hands-on (computer) exercises. This first volume presents the basic principles and concepts of systems biology with theoretical foundations including genetic, co-expression and metabolic networks. It will introduce to multi omics components of systems biology from genomics, through transcriptomics, proteomics to metabolomics. In addition it will highlight statistical methods and (bioinformatic) tools available to model and analyse these data sets along with phenotypes in animal production and health. This book is suitable for both students and teachers in animal sciences and veterinary medicine as well as to researchers in this discipline.

Machine and Deep Learning in Oncology, Medical Physics and Radiology

Machine and Deep Learning in Oncology, Medical Physics and Radiology PDF Author: Issam El Naqa
Publisher: Springer Nature
ISBN: 3030830470
Category : Science
Languages : en
Pages : 514

Get Book Here

Book Description
This book, now in an extensively revised and updated second edition, provides a comprehensive overview of both machine learning and deep learning and their role in oncology, medical physics, and radiology. Readers will find thorough coverage of basic theory, methods, and demonstrative applications in these fields. An introductory section explains machine and deep learning, reviews learning methods, discusses performance evaluation, and examines software tools and data protection. Detailed individual sections are then devoted to the use of machine and deep learning for medical image analysis, treatment planning and delivery, and outcomes modeling and decision support. Resources for varying applications are provided in each chapter, and software code is embedded as appropriate for illustrative purposes. The book will be invaluable for students and residents in medical physics, radiology, and oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.