Author: David Patrick
Publisher:
ISBN: 9781934124109
Category : Counting
Languages : en
Pages : 0
Book Description
Introduction to Counting and Probability
Author: David Patrick
Publisher:
ISBN: 9781934124109
Category : Counting
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9781934124109
Category : Counting
Languages : en
Pages : 0
Book Description
Analytic Combinatorics
Author: Philippe Flajolet
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825
Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825
Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
The Probabilistic Method
Author: Noga Alon
Publisher: John Wiley & Sons
ISBN: 1119062071
Category : Mathematics
Languages : en
Pages : 396
Book Description
Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.
Publisher: John Wiley & Sons
ISBN: 1119062071
Category : Mathematics
Languages : en
Pages : 396
Book Description
Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.
Probability, Combinatorics and Control
Author: Andrey Kostogryzov
Publisher: BoD – Books on Demand
ISBN: 1838801030
Category : Mathematics
Languages : en
Pages : 336
Book Description
Probabilistic and combinatorial techniques are often used for solving advanced problems. This book describes different probabilistic modeling methods and their applications in various areas, such as artificial intelligence, offshore platforms, social networks, and others. It aims to educate how modern probabilistic and combinatorial models may be created to formalize uncertainties; to train how new probabilistic models can be generated for the systems of complex structures; to describe the correct use of the presented models for rational control in systems creation and operation; and to demonstrate analytical possibilities and practical effects for solving different system problems on each life cycle stage.
Publisher: BoD – Books on Demand
ISBN: 1838801030
Category : Mathematics
Languages : en
Pages : 336
Book Description
Probabilistic and combinatorial techniques are often used for solving advanced problems. This book describes different probabilistic modeling methods and their applications in various areas, such as artificial intelligence, offshore platforms, social networks, and others. It aims to educate how modern probabilistic and combinatorial models may be created to formalize uncertainties; to train how new probabilistic models can be generated for the systems of complex structures; to describe the correct use of the presented models for rational control in systems creation and operation; and to demonstrate analytical possibilities and practical effects for solving different system problems on each life cycle stage.
102 Combinatorial Problems
Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817682228
Category : Mathematics
Languages : en
Pages : 125
Book Description
"102 Combinatorial Problems" consists of carefully selected problems that have been used in the training and testing of the USA International Mathematical Olympiad (IMO) team. Key features: * Provides in-depth enrichment in the important areas of combinatorics by reorganizing and enhancing problem-solving tactics and strategies * Topics include: combinatorial arguments and identities, generating functions, graph theory, recursive relations, sums and products, probability, number theory, polynomials, theory of equations, complex numbers in geometry, algorithmic proofs, combinatorial and advanced geometry, functional equations and classical inequalities The book is systematically organized, gradually building combinatorial skills and techniques and broadening the student's view of mathematics. Aside from its practical use in training teachers and students engaged in mathematical competitions, it is a source of enrichment that is bound to stimulate interest in a variety of mathematical areas that are tangential to combinatorics.
Publisher: Springer Science & Business Media
ISBN: 0817682228
Category : Mathematics
Languages : en
Pages : 125
Book Description
"102 Combinatorial Problems" consists of carefully selected problems that have been used in the training and testing of the USA International Mathematical Olympiad (IMO) team. Key features: * Provides in-depth enrichment in the important areas of combinatorics by reorganizing and enhancing problem-solving tactics and strategies * Topics include: combinatorial arguments and identities, generating functions, graph theory, recursive relations, sums and products, probability, number theory, polynomials, theory of equations, complex numbers in geometry, algorithmic proofs, combinatorial and advanced geometry, functional equations and classical inequalities The book is systematically organized, gradually building combinatorial skills and techniques and broadening the student's view of mathematics. Aside from its practical use in training teachers and students engaged in mathematical competitions, it is a source of enrichment that is bound to stimulate interest in a variety of mathematical areas that are tangential to combinatorics.
Invitation to Discrete Mathematics
Author: Jiří Matoušek
Publisher: Oxford University Press
ISBN: 0198570430
Category : Mathematics
Languages : en
Pages : 462
Book Description
A clear and self-contained introduction to discrete mathematics for undergraduates and early graduates.
Publisher: Oxford University Press
ISBN: 0198570430
Category : Mathematics
Languages : en
Pages : 462
Book Description
A clear and self-contained introduction to discrete mathematics for undergraduates and early graduates.
Combinatorial Problems and Exercises
Author: L. Lovász
Publisher: Elsevier
ISBN: 0080933092
Category : Mathematics
Languages : en
Pages : 636
Book Description
The aim of this book is to introduce a range of combinatorial methods for those who want to apply these methods in the solution of practical and theoretical problems. Various tricks and techniques are taught by means of exercises. Hints are given in a separate section and a third section contains all solutions in detail. A dictionary section gives definitions of the combinatorial notions occurring in the book.Combinatorial Problems and Exercises was first published in 1979. This revised edition has the same basic structure but has been brought up to date with a series of exercises on random walks on graphs and their relations to eigenvalues, expansion properties and electrical resistance. In various chapters the author found lines of thought that have been extended in a natural and significant way in recent years. About 60 new exercises (more counting sub-problems) have been added and several solutions have been simplified.
Publisher: Elsevier
ISBN: 0080933092
Category : Mathematics
Languages : en
Pages : 636
Book Description
The aim of this book is to introduce a range of combinatorial methods for those who want to apply these methods in the solution of practical and theoretical problems. Various tricks and techniques are taught by means of exercises. Hints are given in a separate section and a third section contains all solutions in detail. A dictionary section gives definitions of the combinatorial notions occurring in the book.Combinatorial Problems and Exercises was first published in 1979. This revised edition has the same basic structure but has been brought up to date with a series of exercises on random walks on graphs and their relations to eigenvalues, expansion properties and electrical resistance. In various chapters the author found lines of thought that have been extended in a natural and significant way in recent years. About 60 new exercises (more counting sub-problems) have been added and several solutions have been simplified.
Combinatorics and Probability
Author: Graham Brightwell
Publisher: Cambridge University Press
ISBN: 0521872073
Category : Mathematics
Languages : en
Pages : 27
Book Description
This volume celebrating the 60th birthday of Béla Bollobás presents the state of the art in combinatorics.
Publisher: Cambridge University Press
ISBN: 0521872073
Category : Mathematics
Languages : en
Pages : 27
Book Description
This volume celebrating the 60th birthday of Béla Bollobás presents the state of the art in combinatorics.
Combinatorics
Author: Peter Jephson Cameron
Publisher: Cambridge University Press
ISBN: 9780521457613
Category : Mathematics
Languages : en
Pages : 372
Book Description
Combinatorics is a subject of increasing importance because of its links with computer science, statistics, and algebra. This textbook stresses common techniques (such as generating functions and recursive construction) that underlie the great variety of subject matter, and the fact that a constructive or algorithmic proof is more valuable than an existence proof. The author emphasizes techniques as well as topics and includes many algorithms described in simple terms. The text should provide essential background for students in all parts of discrete mathematics.
Publisher: Cambridge University Press
ISBN: 9780521457613
Category : Mathematics
Languages : en
Pages : 372
Book Description
Combinatorics is a subject of increasing importance because of its links with computer science, statistics, and algebra. This textbook stresses common techniques (such as generating functions and recursive construction) that underlie the great variety of subject matter, and the fact that a constructive or algorithmic proof is more valuable than an existence proof. The author emphasizes techniques as well as topics and includes many algorithms described in simple terms. The text should provide essential background for students in all parts of discrete mathematics.
112 Combinatorial Problems from the AwesomeMath Summer Program
Author: Vlad Matei
Publisher:
ISBN: 9780996874526
Category : Combinatorial analysis
Languages : en
Pages : 0
Book Description
This book aims to give students a chance to begin exploring some introductory to intermediate topics in combinatorics, a fascinating and accessible branch of mathematics centered around (among other things) counting various objects and sets. We include chapters featuring tools for solving counting problems, proof techniques, and more to give students a broad foundation to build on. The only prerequisites are a solid background in arithmetic, some basic algebra, and a love for learning math.
Publisher:
ISBN: 9780996874526
Category : Combinatorial analysis
Languages : en
Pages : 0
Book Description
This book aims to give students a chance to begin exploring some introductory to intermediate topics in combinatorics, a fascinating and accessible branch of mathematics centered around (among other things) counting various objects and sets. We include chapters featuring tools for solving counting problems, proof techniques, and more to give students a broad foundation to build on. The only prerequisites are a solid background in arithmetic, some basic algebra, and a love for learning math.