Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering PDF Author: Paul Glasserman
Publisher: Springer Science & Business Media
ISBN: 0387216170
Category : Mathematics
Languages : en
Pages : 603

Get Book Here

Book Description
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis

Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering PDF Author: Paul Glasserman
Publisher: Springer Science & Business Media
ISBN: 0387216170
Category : Mathematics
Languages : en
Pages : 603

Get Book Here

Book Description
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis

Pricing American Options Using Monte Carlo Simulation

Pricing American Options Using Monte Carlo Simulation PDF Author: Victoria Zhanna Averbukh
Publisher:
ISBN:
Category : Finansielle instrumenter
Languages : en
Pages : 138

Get Book Here

Book Description


A Monte Carlo Method for Pricing American Options

A Monte Carlo Method for Pricing American Options PDF Author: Diego Garcia
Publisher:
ISBN:
Category :
Languages : en
Pages : 132

Get Book Here

Book Description


Python for Finance Cookbook

Python for Finance Cookbook PDF Author: Eryk Lewinson
Publisher: Packt Publishing Ltd
ISBN: 1789617324
Category : Computers
Languages : en
Pages : 426

Get Book Here

Book Description
Solve common and not-so-common financial problems using Python libraries such as NumPy, SciPy, and pandas Key FeaturesUse powerful Python libraries such as pandas, NumPy, and SciPy to analyze your financial dataExplore unique recipes for financial data analysis and processing with PythonEstimate popular financial models such as CAPM and GARCH using a problem-solution approachBook Description Python is one of the most popular programming languages used in the financial industry, with a huge set of accompanying libraries. In this book, you'll cover different ways of downloading financial data and preparing it for modeling. You'll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, RSI, and backtest automatic trading strategies. Next, you'll cover time series analysis and models, such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and the Fama-French three-factor model. You'll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you'll work through an entire data science project in the financial domain. You'll also learn how to solve the credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models. You'll then be able to tune the hyperparameters of the models and handle class imbalance. Finally, you'll focus on learning how to use deep learning (PyTorch) for approaching financial tasks. By the end of this book, you’ll have learned how to effectively analyze financial data using a recipe-based approach. What you will learnDownload and preprocess financial data from different sourcesBacktest the performance of automatic trading strategies in a real-world settingEstimate financial econometrics models in Python and interpret their resultsUse Monte Carlo simulations for a variety of tasks such as derivatives valuation and risk assessmentImprove the performance of financial models with the latest Python librariesApply machine learning and deep learning techniques to solve different financial problemsUnderstand the different approaches used to model financial time series dataWho this book is for This book is for financial analysts, data analysts, and Python developers who want to learn how to implement a broad range of tasks in the finance domain. Data scientists looking to devise intelligent financial strategies to perform efficient financial analysis will also find this book useful. Working knowledge of the Python programming language is mandatory to grasp the concepts covered in the book effectively.

Nonlinear Option Pricing

Nonlinear Option Pricing PDF Author: Julien Guyon
Publisher: CRC Press
ISBN: 1466570342
Category : Business & Economics
Languages : en
Pages : 480

Get Book Here

Book Description
New Tools to Solve Your Option Pricing ProblemsFor nonlinear PDEs encountered in quantitative finance, advanced probabilistic methods are needed to address dimensionality issues. Written by two leaders in quantitative research-including Risk magazine's 2013 Quant of the Year-Nonlinear Option Pricing compares various numerical methods for solving hi

Probabilistic Constrained Optimization

Probabilistic Constrained Optimization PDF Author: Stanislav Uryasev
Publisher: Springer Science & Business Media
ISBN: 1475731507
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
Probabilistic and percentile/quantile functions play an important role in several applications, such as finance (Value-at-Risk), nuclear safety, and the environment. Recently, significant advances have been made in sensitivity analysis and optimization of probabilistic functions, which is the basis for construction of new efficient approaches. This book presents the state of the art in the theory of optimization of probabilistic functions and several engineering and finance applications, including material flow systems, production planning, Value-at-Risk, asset and liability management, and optimal trading strategies for financial derivatives (options). Audience: The book is a valuable source of information for faculty, students, researchers, and practitioners in financial engineering, operation research, optimization, computer science, and related areas.

Monte Carlo and Quasi-Monte Carlo Methods

Monte Carlo and Quasi-Monte Carlo Methods PDF Author: Ronald Cools
Publisher: Springer
ISBN: 3319335073
Category : Mathematics
Languages : en
Pages : 624

Get Book Here

Book Description
This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.

Numerical Methods in Finance

Numerical Methods in Finance PDF Author: René Carmona
Publisher: Springer Science & Business Media
ISBN: 3642257461
Category : Mathematics
Languages : en
Pages : 478

Get Book Here

Book Description
Numerical methods in finance have emerged as a vital field at the crossroads of probability theory, finance and numerical analysis. Based on presentations given at the workshop Numerical Methods in Finance held at the INRIA Bordeaux (France) on June 1-2, 2010, this book provides an overview of the major new advances in the numerical treatment of instruments with American exercises. Naturally it covers the most recent research on the mathematical theory and the practical applications of optimal stopping problems as they relate to financial applications. By extension, it also provides an original treatment of Monte Carlo methods for the recursive computation of conditional expectations and solutions of BSDEs and generalized multiple optimal stopping problems and their applications to the valuation of energy derivatives and assets. The articles were carefully written in a pedagogical style and a reasonably self-contained manner. The book is geared toward quantitative analysts, probabilists, and applied mathematicians interested in financial applications.

An Introduction to Financial Option Valuation

An Introduction to Financial Option Valuation PDF Author: Desmond J. Higham
Publisher: Cambridge University Press
ISBN: 1139457896
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description
This is a lively textbook providing a solid introduction to financial option valuation for undergraduate students armed with a working knowledge of a first year calculus. Written in a series of short chapters, its self-contained treatment gives equal weight to applied mathematics, stochastics and computational algorithms. No prior background in probability, statistics or numerical analysis is required. Detailed derivations of both the basic asset price model and the Black–Scholes equation are provided along with a presentation of appropriate computational techniques including binomial, finite differences and in particular, variance reduction techniques for the Monte Carlo method. Each chapter comes complete with accompanying stand-alone MATLAB code listing to illustrate a key idea. Furthermore, the author has made heavy use of figures and examples, and has included computations based on real stock market data.

Stochastic Simulation and Applications in Finance with MATLAB Programs

Stochastic Simulation and Applications in Finance with MATLAB Programs PDF Author: Huu Tue Huynh
Publisher: John Wiley & Sons
ISBN: 0470722134
Category : Business & Economics
Languages : en
Pages : 354

Get Book Here

Book Description
Stochastic Simulation and Applications in Finance with MATLAB Programs explains the fundamentals of Monte Carlo simulation techniques, their use in the numerical resolution of stochastic differential equations and their current applications in finance. Building on an integrated approach, it provides a pedagogical treatment of the need-to-know materials in risk management and financial engineering. The book takes readers through the basic concepts, covering the most recent research and problems in the area, including: the quadratic re-sampling technique, the Least Squared Method, the dynamic programming and Stratified State Aggregation technique to price American options, the extreme value simulation technique to price exotic options and the retrieval of volatility method to estimate Greeks. The authors also present modern term structure of interest rate models and pricing swaptions with the BGM market model, and give a full explanation of corporate securities valuation and credit risk based on the structural approach of Merton. Case studies on financial guarantees illustrate how to implement the simulation techniques in pricing and hedging. NOTE TO READER: The CD has been converted to URL. Go to the following website www.wiley.com/go/huyhnstochastic which provides MATLAB programs for the practical examples and case studies, which will give the reader confidence in using and adapting specific ways to solve problems involving stochastic processes in finance.