Author: Kalle Kaarli
Publisher: CRC Press
ISBN: 9781584882039
Category : Mathematics
Languages : en
Pages : 378
Book Description
Boolean algebras have historically played a special role in the development of the theory of general or "universal" algebraic systems, providing important links between algebra and analysis, set theory, mathematical logic, and computer science. It is not surprising then that focusing on specific properties of Boolean algebras has lead to new directions in universal algebra. In the first unified study of polynomial completeness, Polynomial Completeness in Algebraic Systems focuses on and systematically extends another specific property of Boolean algebras: the property of affine completeness. The authors present full proof that all affine complete varieties are congruence distributive and that they are finitely generated if and only if they can be presented using only a finite number of basic operations. In addition to these important findings, the authors describe the different relationships between the properties of lattices of equivalence relations and the systems of functions compatible with them. An introductory chapter surveys the appropriate background material, exercises in each chapter allow readers to test their understanding, and open problems offer new research possibilities. Thus Polynomial Completeness in Algebraic Systems constitutes an accessible, coherent presentation of this rich topic valuable to both researchers and graduate students in general algebraic systems.
Polynomial Completeness in Algebraic Systems
Author: Kalle Kaarli
Publisher: CRC Press
ISBN: 9781584882039
Category : Mathematics
Languages : en
Pages : 378
Book Description
Boolean algebras have historically played a special role in the development of the theory of general or "universal" algebraic systems, providing important links between algebra and analysis, set theory, mathematical logic, and computer science. It is not surprising then that focusing on specific properties of Boolean algebras has lead to new directions in universal algebra. In the first unified study of polynomial completeness, Polynomial Completeness in Algebraic Systems focuses on and systematically extends another specific property of Boolean algebras: the property of affine completeness. The authors present full proof that all affine complete varieties are congruence distributive and that they are finitely generated if and only if they can be presented using only a finite number of basic operations. In addition to these important findings, the authors describe the different relationships between the properties of lattices of equivalence relations and the systems of functions compatible with them. An introductory chapter surveys the appropriate background material, exercises in each chapter allow readers to test their understanding, and open problems offer new research possibilities. Thus Polynomial Completeness in Algebraic Systems constitutes an accessible, coherent presentation of this rich topic valuable to both researchers and graduate students in general algebraic systems.
Publisher: CRC Press
ISBN: 9781584882039
Category : Mathematics
Languages : en
Pages : 378
Book Description
Boolean algebras have historically played a special role in the development of the theory of general or "universal" algebraic systems, providing important links between algebra and analysis, set theory, mathematical logic, and computer science. It is not surprising then that focusing on specific properties of Boolean algebras has lead to new directions in universal algebra. In the first unified study of polynomial completeness, Polynomial Completeness in Algebraic Systems focuses on and systematically extends another specific property of Boolean algebras: the property of affine completeness. The authors present full proof that all affine complete varieties are congruence distributive and that they are finitely generated if and only if they can be presented using only a finite number of basic operations. In addition to these important findings, the authors describe the different relationships between the properties of lattices of equivalence relations and the systems of functions compatible with them. An introductory chapter surveys the appropriate background material, exercises in each chapter allow readers to test their understanding, and open problems offer new research possibilities. Thus Polynomial Completeness in Algebraic Systems constitutes an accessible, coherent presentation of this rich topic valuable to both researchers and graduate students in general algebraic systems.
Algebraic Complexity Theory
Author: Peter Bürgisser
Publisher: Springer Science & Business Media
ISBN: 3662033380
Category : Mathematics
Languages : en
Pages : 630
Book Description
The algorithmic solution of problems has always been one of the major concerns of mathematics. For a long time such solutions were based on an intuitive notion of algorithm. It is only in this century that metamathematical problems have led to the intensive search for a precise and sufficiently general formalization of the notions of computability and algorithm. In the 1930s, a number of quite different concepts for this purpose were pro posed, such as Turing machines, WHILE-programs, recursive functions, Markov algorithms, and Thue systems. All these concepts turned out to be equivalent, a fact summarized in Church's thesis, which says that the resulting definitions form an adequate formalization of the intuitive notion of computability. This had and continues to have an enormous effect. First of all, with these notions it has been possible to prove that various problems are algorithmically unsolvable. Among of group these undecidable problems are the halting problem, the word problem theory, the Post correspondence problem, and Hilbert's tenth problem. Secondly, concepts like Turing machines and WHILE-programs had a strong influence on the development of the first computers and programming languages. In the era of digital computers, the question of finding efficient solutions to algorithmically solvable problems has become increasingly important. In addition, the fact that some problems can be solved very efficiently, while others seem to defy all attempts to find an efficient solution, has called for a deeper under standing of the intrinsic computational difficulty of problems.
Publisher: Springer Science & Business Media
ISBN: 3662033380
Category : Mathematics
Languages : en
Pages : 630
Book Description
The algorithmic solution of problems has always been one of the major concerns of mathematics. For a long time such solutions were based on an intuitive notion of algorithm. It is only in this century that metamathematical problems have led to the intensive search for a precise and sufficiently general formalization of the notions of computability and algorithm. In the 1930s, a number of quite different concepts for this purpose were pro posed, such as Turing machines, WHILE-programs, recursive functions, Markov algorithms, and Thue systems. All these concepts turned out to be equivalent, a fact summarized in Church's thesis, which says that the resulting definitions form an adequate formalization of the intuitive notion of computability. This had and continues to have an enormous effect. First of all, with these notions it has been possible to prove that various problems are algorithmically unsolvable. Among of group these undecidable problems are the halting problem, the word problem theory, the Post correspondence problem, and Hilbert's tenth problem. Secondly, concepts like Turing machines and WHILE-programs had a strong influence on the development of the first computers and programming languages. In the era of digital computers, the question of finding efficient solutions to algorithmically solvable problems has become increasingly important. In addition, the fact that some problems can be solved very efficiently, while others seem to defy all attempts to find an efficient solution, has called for a deeper under standing of the intrinsic computational difficulty of problems.
Solving Systems of Polynomial Equations
Author: Bernd Sturmfels
Publisher: American Mathematical Soc.
ISBN: 0821832514
Category : Mathematics
Languages : en
Pages : 162
Book Description
Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.
Publisher: American Mathematical Soc.
ISBN: 0821832514
Category : Mathematics
Languages : en
Pages : 162
Book Description
Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.
Numerical Polynomial Algebra
Author: Hans J. Stetter
Publisher: SIAM
ISBN: 0898715571
Category : Mathematics
Languages : en
Pages : 475
Book Description
This book is the first comprehensive treatment of numerical polynomial algebra, an area which so far has received little attention.
Publisher: SIAM
ISBN: 0898715571
Category : Mathematics
Languages : en
Pages : 475
Book Description
This book is the first comprehensive treatment of numerical polynomial algebra, an area which so far has received little attention.
The Fundamental Theorem of Algebra
Author: Benjamin Fine
Publisher: Springer Science & Business Media
ISBN: 1461219280
Category : Mathematics
Languages : en
Pages : 220
Book Description
The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.
Publisher: Springer Science & Business Media
ISBN: 1461219280
Category : Mathematics
Languages : en
Pages : 220
Book Description
The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.
The Algebraic Theory of Modular Systems
Author: Francis Sowerby Macaulay
Publisher:
ISBN:
Category : Elimination
Languages : en
Pages : 132
Book Description
Publisher:
ISBN:
Category : Elimination
Languages : en
Pages : 132
Book Description
Complete School Algebra
Author: Herbert Edwin Hawkes
Publisher:
ISBN:
Category : Algebra
Languages : en
Pages : 538
Book Description
Publisher:
ISBN:
Category : Algebra
Languages : en
Pages : 538
Book Description
Formal Methods and Hybrid Real-Time Systems
Author: Cliff B. Jones
Publisher: Springer
ISBN: 3540752218
Category : Computers
Languages : en
Pages : 551
Book Description
This Festschrift volume is published to honour both Dines Bjørner and Zhou Chaochen on the occasion of their 70th birthdays. The volume includes 25 refereed papers by leading researchers, current and former colleagues, who congregated at a celebratory symposium held in Macao, China, in the course of the International Colloquium on Theoretical Aspects of Computing, ICTAC 2007. The papers cover a broad spectrum of subjects.
Publisher: Springer
ISBN: 3540752218
Category : Computers
Languages : en
Pages : 551
Book Description
This Festschrift volume is published to honour both Dines Bjørner and Zhou Chaochen on the occasion of their 70th birthdays. The volume includes 25 refereed papers by leading researchers, current and former colleagues, who congregated at a celebratory symposium held in Macao, China, in the course of the International Colloquium on Theoretical Aspects of Computing, ICTAC 2007. The papers cover a broad spectrum of subjects.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1084
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1084
Book Description
Rings and Nearrings
Author: Mikhail Chebotar
Publisher: Walter de Gruyter
ISBN: 3110912163
Category : Mathematics
Languages : en
Pages : 177
Book Description
This volume consists of seven papers related in various matters to the research work of Kostia Beidar†, a distinguished ring theorist and professor of National Ching Kung University (NCKU). Written by leading experts in these areas, the papers also emphasize important applications to other fields of mathematics. Most papers are based on talks that were presented at the memorial conference which was held in March 2005 at NCKU.
Publisher: Walter de Gruyter
ISBN: 3110912163
Category : Mathematics
Languages : en
Pages : 177
Book Description
This volume consists of seven papers related in various matters to the research work of Kostia Beidar†, a distinguished ring theorist and professor of National Ching Kung University (NCKU). Written by leading experts in these areas, the papers also emphasize important applications to other fields of mathematics. Most papers are based on talks that were presented at the memorial conference which was held in March 2005 at NCKU.