Author: Joachim Kessler
Publisher: Springer Science & Business Media
ISBN: 9783540157366
Category : Science
Languages : en
Pages : 320
Book Description
The rapid growth of the subject since the first edition ten years ago has made it necessary to rewrite the greater part of the book. Except for the introductory portion and the section on Mott scattering, the book has been completely revised. In Chap. 3, sections on polarization violating reflection symmetry, on resonance scattering, and on inelastic processes have been added. Chapter 4 has been rewritten, taking account of the numerous novel results obtained in exchange scattering. Chapter 5 includes the recent discoveries on photoelectron polarization produced by unpolarized radiation with unpolarized targets and on Auger-electron polarization. In Chap. 6, a further discussion of relativistic polarization phenomena has been added to the book. The immense growth of polarization studies with solids and surfaces required an extension and new presentation of Chap. 7. All but one section of Chap. 8 has been rewritten and a detailed treatment of polarization analysis has been included. Again, a nearly comprehensive treatment has been attempted. Even so, substantial selectivity among the wide range of available material has been essential in order to accomplish a compact presentation. The reference list, selected along the same lines as in the first edition, is meant to lead the reader through the literature giving a guide for finding further references. I want to express my indebtedness to a number of people whose help has been invaluable.
Polarized Electrons
Author: Joachim Kessler
Publisher: Springer Science & Business Media
ISBN: 9783540157366
Category : Science
Languages : en
Pages : 320
Book Description
The rapid growth of the subject since the first edition ten years ago has made it necessary to rewrite the greater part of the book. Except for the introductory portion and the section on Mott scattering, the book has been completely revised. In Chap. 3, sections on polarization violating reflection symmetry, on resonance scattering, and on inelastic processes have been added. Chapter 4 has been rewritten, taking account of the numerous novel results obtained in exchange scattering. Chapter 5 includes the recent discoveries on photoelectron polarization produced by unpolarized radiation with unpolarized targets and on Auger-electron polarization. In Chap. 6, a further discussion of relativistic polarization phenomena has been added to the book. The immense growth of polarization studies with solids and surfaces required an extension and new presentation of Chap. 7. All but one section of Chap. 8 has been rewritten and a detailed treatment of polarization analysis has been included. Again, a nearly comprehensive treatment has been attempted. Even so, substantial selectivity among the wide range of available material has been essential in order to accomplish a compact presentation. The reference list, selected along the same lines as in the first edition, is meant to lead the reader through the literature giving a guide for finding further references. I want to express my indebtedness to a number of people whose help has been invaluable.
Publisher: Springer Science & Business Media
ISBN: 9783540157366
Category : Science
Languages : en
Pages : 320
Book Description
The rapid growth of the subject since the first edition ten years ago has made it necessary to rewrite the greater part of the book. Except for the introductory portion and the section on Mott scattering, the book has been completely revised. In Chap. 3, sections on polarization violating reflection symmetry, on resonance scattering, and on inelastic processes have been added. Chapter 4 has been rewritten, taking account of the numerous novel results obtained in exchange scattering. Chapter 5 includes the recent discoveries on photoelectron polarization produced by unpolarized radiation with unpolarized targets and on Auger-electron polarization. In Chap. 6, a further discussion of relativistic polarization phenomena has been added to the book. The immense growth of polarization studies with solids and surfaces required an extension and new presentation of Chap. 7. All but one section of Chap. 8 has been rewritten and a detailed treatment of polarization analysis has been included. Again, a nearly comprehensive treatment has been attempted. Even so, substantial selectivity among the wide range of available material has been essential in order to accomplish a compact presentation. The reference list, selected along the same lines as in the first edition, is meant to lead the reader through the literature giving a guide for finding further references. I want to express my indebtedness to a number of people whose help has been invaluable.
The Elementary Process Of Bremsstrahlung
Author: Eberhard Haug
Publisher: World Scientific
ISBN: 9814485195
Category : Science
Languages : en
Pages : 272
Book Description
This book deals with the theory and experiment of the elementary process of bremsstrahlung, where photons are detected in coincidence with decelerated outgoing electrons. Such experiments allow for a more stringent check of the theoretical work. The main emphasis is laid on electron-atom bremsstrahlung and electron-electron bremsstrahlung, but further bremsstrahlung processes are also dealt with. In the theoretical parts, triply differential cross sections are derived in various approximations, including electron spin and photon-polarization. In the experimental sections, electron-photon coincidence experiments are discussed. These are done partly with transversely polarized electron beams and partly with detectors for the bremsstrahlung linear polarization.
Publisher: World Scientific
ISBN: 9814485195
Category : Science
Languages : en
Pages : 272
Book Description
This book deals with the theory and experiment of the elementary process of bremsstrahlung, where photons are detected in coincidence with decelerated outgoing electrons. Such experiments allow for a more stringent check of the theoretical work. The main emphasis is laid on electron-atom bremsstrahlung and electron-electron bremsstrahlung, but further bremsstrahlung processes are also dealt with. In the theoretical parts, triply differential cross sections are derived in various approximations, including electron spin and photon-polarization. In the experimental sections, electron-photon coincidence experiments are discussed. These are done partly with transversely polarized electron beams and partly with detectors for the bremsstrahlung linear polarization.
Plasma Atomic Physics
Author: Frank B. Rosmej
Publisher: Springer Nature
ISBN: 3030059685
Category : Science
Languages : en
Pages : 668
Book Description
Plasma Atomic Physics provides an overview of the elementary processes within atoms and ions in plasmas, and introduces readers to the language of atomic spectra and light emission, allowing them to explore the various and fascinating radiative properties of matter. The book familiarizes readers with the complex quantum-mechanical descriptions of electromagnetic and collisional processes, while also developing a number of effective qualitative models that will allow them to obtain adequately comprehensive descriptions of collisional-radiative processes in dense plasmas, dielectronic satellite emissions and autoionizing states, hollow ion X-ray emissions, polarized atoms and ions, hot electrons, charge exchange, atomic population kinetics, and radiation transport. Numerous applications to plasma spectroscopy and experimental data are presented, which concern magnetic confinement fusion, inertial fusion, laser-produced plasmas, and X-ray free-electron lasers’ interaction with matter. Particular highlights include the development of quantum kinetics to a level surpassing the almost exclusively used quasi-classical approach in atomic population kinetics, the introduction of the recently developed Quantum-F-Matrix-Theory (QFMT) to study the impact of plasma microfields on atomic populations, and the Enrico Fermi equivalent photon method to develop the “Plasma Atom”, where the response properties and oscillator strength distribution are represented with the help of a local plasma frequency of the atomic electron density. Based on courses held by the authors, this material will assist students and scientists studying the complex processes within atoms and ions in different kinds of plasmas by developing relatively simple but highly effective models. Considerable attention is paid to a number of qualitative models that deliver physical transparency, while extensive tables and formulas promote the practical and useful application of complex theories and provide effective tools for non-specialist readers.
Publisher: Springer Nature
ISBN: 3030059685
Category : Science
Languages : en
Pages : 668
Book Description
Plasma Atomic Physics provides an overview of the elementary processes within atoms and ions in plasmas, and introduces readers to the language of atomic spectra and light emission, allowing them to explore the various and fascinating radiative properties of matter. The book familiarizes readers with the complex quantum-mechanical descriptions of electromagnetic and collisional processes, while also developing a number of effective qualitative models that will allow them to obtain adequately comprehensive descriptions of collisional-radiative processes in dense plasmas, dielectronic satellite emissions and autoionizing states, hollow ion X-ray emissions, polarized atoms and ions, hot electrons, charge exchange, atomic population kinetics, and radiation transport. Numerous applications to plasma spectroscopy and experimental data are presented, which concern magnetic confinement fusion, inertial fusion, laser-produced plasmas, and X-ray free-electron lasers’ interaction with matter. Particular highlights include the development of quantum kinetics to a level surpassing the almost exclusively used quasi-classical approach in atomic population kinetics, the introduction of the recently developed Quantum-F-Matrix-Theory (QFMT) to study the impact of plasma microfields on atomic populations, and the Enrico Fermi equivalent photon method to develop the “Plasma Atom”, where the response properties and oscillator strength distribution are represented with the help of a local plasma frequency of the atomic electron density. Based on courses held by the authors, this material will assist students and scientists studying the complex processes within atoms and ions in different kinds of plasmas by developing relatively simple but highly effective models. Considerable attention is paid to a number of qualitative models that deliver physical transparency, while extensive tables and formulas promote the practical and useful application of complex theories and provide effective tools for non-specialist readers.
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 978
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 978
Book Description
Library of Congress Subject Headings
Author: Library of Congress
Publisher:
ISBN:
Category : Subject headings, Library of Congress
Languages : en
Pages : 1512
Book Description
Publisher:
ISBN:
Category : Subject headings, Library of Congress
Languages : en
Pages : 1512
Book Description
Library of Congress Subject Headings
Author: Library of Congress. Cataloging Policy and Support Office
Publisher:
ISBN:
Category : Subject headings, Library of Congress
Languages : en
Pages : 1596
Book Description
Publisher:
ISBN:
Category : Subject headings, Library of Congress
Languages : en
Pages : 1596
Book Description
Electron-Photon Interaction in Dense Media
Author: Helmut Wiedemann
Publisher: Springer Science & Business Media
ISBN: 940100367X
Category : Science
Languages : en
Pages : 399
Book Description
A comprehensive survey of recent theoretical and experimental progress in the area of electron-photon interaction and dense media. A state-of-the-art discussion of radiation production, with descriptions of new ideas and technologies that enhance the production of X-rays in the form of channelling, transition and parametric X-ray production. Progress in electron beam physics to produce sub-picosecond electron bunches from low-energy linear accelerators make it possible to produce coherent, high brightness, submillimeter radiation and sub-picosecond X-ray pulses. Micro-undulators in the form of bent crystalline structures hold great promise as future X-ray sources.
Publisher: Springer Science & Business Media
ISBN: 940100367X
Category : Science
Languages : en
Pages : 399
Book Description
A comprehensive survey of recent theoretical and experimental progress in the area of electron-photon interaction and dense media. A state-of-the-art discussion of radiation production, with descriptions of new ideas and technologies that enhance the production of X-rays in the form of channelling, transition and parametric X-ray production. Progress in electron beam physics to produce sub-picosecond electron bunches from low-energy linear accelerators make it possible to produce coherent, high brightness, submillimeter radiation and sub-picosecond X-ray pulses. Micro-undulators in the form of bent crystalline structures hold great promise as future X-ray sources.
Handbook of X-Ray Data
Author: Günter H. Zschornack
Publisher: Springer Science & Business Media
ISBN: 3540286187
Category : Technology & Engineering
Languages : en
Pages : 969
Book Description
This is the only handbook available on X-ray data. In a concise and informative manner, the most important data connected with the emission of characteristic X-ray lines are tabulated for all elements up to Z = 95 (Americium). The tabulated data are characterized and, in most cases, evaluated. Furthermore, all important processes and phenomena connected with the production, emission and detection of characteristic X-rays are discussed.
Publisher: Springer Science & Business Media
ISBN: 3540286187
Category : Technology & Engineering
Languages : en
Pages : 969
Book Description
This is the only handbook available on X-ray data. In a concise and informative manner, the most important data connected with the emission of characteristic X-ray lines are tabulated for all elements up to Z = 95 (Americium). The tabulated data are characterized and, in most cases, evaluated. Furthermore, all important processes and phenomena connected with the production, emission and detection of characteristic X-rays are discussed.
Reviews of Plasma Physics
Author: Vitaly D. Shafranov
Publisher: Springer Science & Business Media
ISBN: 1461500273
Category : Science
Languages : en
Pages : 293
Book Description
Reviews of Plasma Physics, Volume 23, presents two high quality reviews from the cutting-edge of Russian plasma physics research: "Plasma Models of Atom and Radiative-Collisional Processes", by V.A. Astapenko, L.A. Bureyeva, V.S. Lisitsa, is devoted to a unified description of the atomic core polarization effects in the free-free, free-bound and bound-bound transitions of the charged particles in the field of multielectron atom. "Asymptotic Theory of Charge Exchange And Mobility Processes for Atomic Ions" by B.M. Smirnov reviews the process of resonant charge exchange, and also the transport processes (mobility and diffusion coefficients) for ions in parent gases which are determined by resonant electron transfer.
Publisher: Springer Science & Business Media
ISBN: 1461500273
Category : Science
Languages : en
Pages : 293
Book Description
Reviews of Plasma Physics, Volume 23, presents two high quality reviews from the cutting-edge of Russian plasma physics research: "Plasma Models of Atom and Radiative-Collisional Processes", by V.A. Astapenko, L.A. Bureyeva, V.S. Lisitsa, is devoted to a unified description of the atomic core polarization effects in the free-free, free-bound and bound-bound transitions of the charged particles in the field of multielectron atom. "Asymptotic Theory of Charge Exchange And Mobility Processes for Atomic Ions" by B.M. Smirnov reviews the process of resonant charge exchange, and also the transport processes (mobility and diffusion coefficients) for ions in parent gases which are determined by resonant electron transfer.
Diffraction Radiation from Relativistic Particles
Author: Alexander Potylitsyn
Publisher: Springer Science & Business Media
ISBN: 3642125123
Category : Science
Languages : en
Pages : 285
Book Description
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves near a target edge at a distance ( – Lorentz factor, – wave length). Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.
Publisher: Springer Science & Business Media
ISBN: 3642125123
Category : Science
Languages : en
Pages : 285
Book Description
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves near a target edge at a distance ( – Lorentz factor, – wave length). Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.