Author: Giorgio Patrizio
Publisher: Springer
ISBN: 3642364217
Category : Mathematics
Languages : en
Pages : 328
Book Description
Pluripotential theory is a very powerful tool in geometry, complex analysis and dynamics. This volume brings together the lectures held at the 2011 CIME session on "pluripotential theory" in Cetraro, Italy. This CIME course focused on complex Monge-Ampére equations, applications of pluripotential theory to Kahler geometry and algebraic geometry and to holomorphic dynamics. The contributions provide an extensive description of the theory and its very recent developments, starting from basic introductory materials and concluding with open questions in current research.
Pluripotential Theory
Author: Giorgio Patrizio
Publisher: Springer
ISBN: 3642364217
Category : Mathematics
Languages : en
Pages : 328
Book Description
Pluripotential theory is a very powerful tool in geometry, complex analysis and dynamics. This volume brings together the lectures held at the 2011 CIME session on "pluripotential theory" in Cetraro, Italy. This CIME course focused on complex Monge-Ampére equations, applications of pluripotential theory to Kahler geometry and algebraic geometry and to holomorphic dynamics. The contributions provide an extensive description of the theory and its very recent developments, starting from basic introductory materials and concluding with open questions in current research.
Publisher: Springer
ISBN: 3642364217
Category : Mathematics
Languages : en
Pages : 328
Book Description
Pluripotential theory is a very powerful tool in geometry, complex analysis and dynamics. This volume brings together the lectures held at the 2011 CIME session on "pluripotential theory" in Cetraro, Italy. This CIME course focused on complex Monge-Ampére equations, applications of pluripotential theory to Kahler geometry and algebraic geometry and to holomorphic dynamics. The contributions provide an extensive description of the theory and its very recent developments, starting from basic introductory materials and concluding with open questions in current research.
The Complex Monge-Ampere Equation and Pluripotential Theory
Author: Sławomir Kołodziej
Publisher: American Mathematical Soc.
ISBN: 082183763X
Category : Mathematics
Languages : en
Pages : 82
Book Description
We collect here results on the existence and stability of weak solutions of complex Monge-Ampere equation proved by applying pluripotential theory methods and obtained in past three decades. First we set the stage introducing basic concepts and theorems of pluripotential theory. Then the Dirichlet problem for the complex Monge-Ampere equation is studied. The main goal is to give possibly detailed description of the nonnegative Borel measures which on the right hand side of the equation give rise to plurisubharmonic solutions satisfying additional requirements such as continuity, boundedness or some weaker ones. In the last part, the methods of pluripotential theory are implemented to prove the existence and stability of weak solutions of the complex Monge-Ampere equation on compact Kahler manifolds. This is a generalization of the Calabi-Yau theorem.
Publisher: American Mathematical Soc.
ISBN: 082183763X
Category : Mathematics
Languages : en
Pages : 82
Book Description
We collect here results on the existence and stability of weak solutions of complex Monge-Ampere equation proved by applying pluripotential theory methods and obtained in past three decades. First we set the stage introducing basic concepts and theorems of pluripotential theory. Then the Dirichlet problem for the complex Monge-Ampere equation is studied. The main goal is to give possibly detailed description of the nonnegative Borel measures which on the right hand side of the equation give rise to plurisubharmonic solutions satisfying additional requirements such as continuity, boundedness or some weaker ones. In the last part, the methods of pluripotential theory are implemented to prove the existence and stability of weak solutions of the complex Monge-Ampere equation on compact Kahler manifolds. This is a generalization of the Calabi-Yau theorem.
Pluripotential Theory
Author: Maciej Klimek
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 296
Book Description
Pluripotential theory is a recently developed non-linear complex counterpart of classical potential theory. Its main area of application is multidimensional complex analysis. The central part of the pluripotential theory is occupied by maximal plurisubharmonic functions and the generalized complex Monge-Ampere operator. The interplay between these two concepts provides the focal point of this monograph, which contains an up-to-date account of the developments from the large volume of recent work in this area. A substantial proportion of the work is devoted to classical properties of subharmonic and plurisubharmonic functions, which makes the pluripotential theory available for the first time to a wide audience of analysts.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 296
Book Description
Pluripotential theory is a recently developed non-linear complex counterpart of classical potential theory. Its main area of application is multidimensional complex analysis. The central part of the pluripotential theory is occupied by maximal plurisubharmonic functions and the generalized complex Monge-Ampere operator. The interplay between these two concepts provides the focal point of this monograph, which contains an up-to-date account of the developments from the large volume of recent work in this area. A substantial proportion of the work is devoted to classical properties of subharmonic and plurisubharmonic functions, which makes the pluripotential theory available for the first time to a wide audience of analysts.
Algebra, Complex Analysis, and Pluripotential Theory
Author: Zair Ibragimov
Publisher: Springer
ISBN: 3030011445
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book features papers presented during a special session on algebra, functional analysis, complex analysis, and pluripotential theory. Research articles focus on topics such as slow convergence, spectral expansion, holomorphic extension, m-subharmonic functions, pseudo-Galilean group, involutive algebra, Log-integrable measurable functions, Gibbs measures, harmonic and analytic functions, local automorphisms, Lie algebras, and Leibniz algebras. Many of the papers address the theory of harmonic functions, and the book includes a number of extensive survey papers. Graduate and researchers interested in functional analysis, complex analysis, operator algebras and non-associative algebras will find this book relevant to their studies. The special session was part of the second USA-Uzbekistan Conference on Analysis and Mathematical Physics held on August 8-12, 2017 at Urgench State University (Uzbekistan). The conference encouraged communication and future collaboration among U.S. mathematicians and their counterparts in Uzbekistan and other countries. Main themes included algebra and functional analysis, dynamical systems, mathematical physics and partial differential equations, probability theory and mathematical statistics, and pluripotential theory. A number of significant, recently established results were disseminated at the conference’s scheduled plenary talks, while invited talks presented a broad spectrum of findings in several sessions. Based on a different session from the conference, Differential Equations and Dynamical Systems is also published in the Springer Proceedings in Mathematics & Statistics Series.
Publisher: Springer
ISBN: 3030011445
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book features papers presented during a special session on algebra, functional analysis, complex analysis, and pluripotential theory. Research articles focus on topics such as slow convergence, spectral expansion, holomorphic extension, m-subharmonic functions, pseudo-Galilean group, involutive algebra, Log-integrable measurable functions, Gibbs measures, harmonic and analytic functions, local automorphisms, Lie algebras, and Leibniz algebras. Many of the papers address the theory of harmonic functions, and the book includes a number of extensive survey papers. Graduate and researchers interested in functional analysis, complex analysis, operator algebras and non-associative algebras will find this book relevant to their studies. The special session was part of the second USA-Uzbekistan Conference on Analysis and Mathematical Physics held on August 8-12, 2017 at Urgench State University (Uzbekistan). The conference encouraged communication and future collaboration among U.S. mathematicians and their counterparts in Uzbekistan and other countries. Main themes included algebra and functional analysis, dynamical systems, mathematical physics and partial differential equations, probability theory and mathematical statistics, and pluripotential theory. A number of significant, recently established results were disseminated at the conference’s scheduled plenary talks, while invited talks presented a broad spectrum of findings in several sessions. Based on a different session from the conference, Differential Equations and Dynamical Systems is also published in the Springer Proceedings in Mathematics & Statistics Series.
Degenerate Complex Monge-Ampère Equations
Author: Vincent Guedj
Publisher:
ISBN: 9783037191675
Category :
Languages : en
Pages : 472
Book Description
Publisher:
ISBN: 9783037191675
Category :
Languages : en
Pages : 472
Book Description
Introduction to the Theory of Valuations
Author: Semyon Alesker
Publisher: American Mathematical Soc.
ISBN: 1470443597
Category : Design
Languages : en
Pages : 93
Book Description
Theory of valuations on convex sets is a classical part of convex geometry which goes back at least to the positive solution of the third Hilbert problem by M. Dehn in 1900. Since then the theory has undergone a multifaceted development. The author discusses some of Hadwiger's results on valuations on convex compact sets that are continuous in the Hausdorff metric. The book also discusses the Klain-Schneider theorem as well as the proof of McMullen's conjecture, which led subsequently to many further applications and advances in the theory. The last section gives an overview of more recent developments in the theory of translation-invariant continuous valuations, some of which turn out to be useful in integral geometry. This book grew out of lectures that were given in August 2015 at Kent State University in the framework of the NSF CBMS conference “Introduction to the Theory of Valuations on Convex Sets”. Only a basic background in general convexity is assumed.
Publisher: American Mathematical Soc.
ISBN: 1470443597
Category : Design
Languages : en
Pages : 93
Book Description
Theory of valuations on convex sets is a classical part of convex geometry which goes back at least to the positive solution of the third Hilbert problem by M. Dehn in 1900. Since then the theory has undergone a multifaceted development. The author discusses some of Hadwiger's results on valuations on convex compact sets that are continuous in the Hausdorff metric. The book also discusses the Klain-Schneider theorem as well as the proof of McMullen's conjecture, which led subsequently to many further applications and advances in the theory. The last section gives an overview of more recent developments in the theory of translation-invariant continuous valuations, some of which turn out to be useful in integral geometry. This book grew out of lectures that were given in August 2015 at Kent State University in the framework of the NSF CBMS conference “Introduction to the Theory of Valuations on Convex Sets”. Only a basic background in general convexity is assumed.
Potential Theory - Selected Topics
Author: Hiroaki Aikawa
Publisher: Springer
ISBN: 3540699910
Category : Mathematics
Languages : en
Pages : 208
Book Description
The first part of these lecture notes is an introduction to potential theory to prepare the reader for later parts, which can be used as the basis for a series of advanced lectures/seminars on potential theory/harmonic analysis. Topics covered in the book include minimal thinness, quasiadditivity of capacity, applications of singular integrals to potential theory, L(p)-capacity theory, fine limits of the Nagel-Stein boundary limit theorem and integrability of superharmonic functions. The notes are written for an audience familiar with the theory of integration, distributions and basic functional analysis.
Publisher: Springer
ISBN: 3540699910
Category : Mathematics
Languages : en
Pages : 208
Book Description
The first part of these lecture notes is an introduction to potential theory to prepare the reader for later parts, which can be used as the basis for a series of advanced lectures/seminars on potential theory/harmonic analysis. Topics covered in the book include minimal thinness, quasiadditivity of capacity, applications of singular integrals to potential theory, L(p)-capacity theory, fine limits of the Nagel-Stein boundary limit theorem and integrability of superharmonic functions. The notes are written for an audience familiar with the theory of integration, distributions and basic functional analysis.
Analysis, Complex Geometry, and Mathematical Physics
Author: Paul M. N. Feehan
Publisher: American Mathematical Soc.
ISBN: 1470414643
Category : Mathematics
Languages : en
Pages : 388
Book Description
This volume contains the proceedings of the Conference on Analysis, Complex Geometry and Mathematical Physics: In Honor of Duong H. Phong, which was held from May 7-11, 2013, at Columbia University, New York. The conference featured thirty speakers who spoke on a range of topics reflecting the breadth and depth of the research interests of Duong H. Phong on the occasion of his sixtieth birthday. A common thread, familiar from Phong's own work, was the focus on the interplay between the deep tools of analysis and the rich structures of geometry and physics. Papers included in this volume cover topics such as the complex Monge-Ampère equation, pluripotential theory, geometric partial differential equations, theories of integral operators, integrable systems and perturbative superstring theory.
Publisher: American Mathematical Soc.
ISBN: 1470414643
Category : Mathematics
Languages : en
Pages : 388
Book Description
This volume contains the proceedings of the Conference on Analysis, Complex Geometry and Mathematical Physics: In Honor of Duong H. Phong, which was held from May 7-11, 2013, at Columbia University, New York. The conference featured thirty speakers who spoke on a range of topics reflecting the breadth and depth of the research interests of Duong H. Phong on the occasion of his sixtieth birthday. A common thread, familiar from Phong's own work, was the focus on the interplay between the deep tools of analysis and the rich structures of geometry and physics. Papers included in this volume cover topics such as the complex Monge-Ampère equation, pluripotential theory, geometric partial differential equations, theories of integral operators, integrable systems and perturbative superstring theory.
Complex Analysis and Spectral Theory
Author: H. Garth Dales
Publisher: American Mathematical Soc.
ISBN: 1470446928
Category : Education
Languages : en
Pages : 296
Book Description
This volume contains the proceedings of the Conference on Complex Analysis and Spectral Theory, in celebration of Thomas Ransford's 60th birthday, held from May 21–25, 2018, at Laval University, Québec, Canada. Spectral theory is the branch of mathematics devoted to the study of matrices and their eigenvalues, as well as their infinite-dimensional counterparts, linear operators and their spectra. Spectral theory is ubiquitous in science and engineering because so many physical phenomena, being essentially linear in nature, can be modelled using linear operators. On the other hand, complex analysis is the calculus of functions of a complex variable. They are widely used in mathematics, physics, and in engineering. Both topics are related to numerous other domains in mathematics as well as other branches of science and engineering. The list includes, but is not restricted to, analytical mechanics, physics, astronomy (celestial mechanics), geology (weather modeling), chemistry (reaction rates), biology, population modeling, economics (stock trends, interest rates and the market equilibrium price changes). There are many other connections, and in recent years there has been a tremendous amount of work on reproducing kernel Hilbert spaces of analytic functions, on the operators acting on them, as well as on applications in physics and engineering, which arise from pure topics like interpolation and sampling. Many of these connections are discussed in articles included in this book.
Publisher: American Mathematical Soc.
ISBN: 1470446928
Category : Education
Languages : en
Pages : 296
Book Description
This volume contains the proceedings of the Conference on Complex Analysis and Spectral Theory, in celebration of Thomas Ransford's 60th birthday, held from May 21–25, 2018, at Laval University, Québec, Canada. Spectral theory is the branch of mathematics devoted to the study of matrices and their eigenvalues, as well as their infinite-dimensional counterparts, linear operators and their spectra. Spectral theory is ubiquitous in science and engineering because so many physical phenomena, being essentially linear in nature, can be modelled using linear operators. On the other hand, complex analysis is the calculus of functions of a complex variable. They are widely used in mathematics, physics, and in engineering. Both topics are related to numerous other domains in mathematics as well as other branches of science and engineering. The list includes, but is not restricted to, analytical mechanics, physics, astronomy (celestial mechanics), geology (weather modeling), chemistry (reaction rates), biology, population modeling, economics (stock trends, interest rates and the market equilibrium price changes). There are many other connections, and in recent years there has been a tremendous amount of work on reproducing kernel Hilbert spaces of analytic functions, on the operators acting on them, as well as on applications in physics and engineering, which arise from pure topics like interpolation and sampling. Many of these connections are discussed in articles included in this book.
Functional Analysis and Complex Analysis
Author: Aydin Aytuna
Publisher: American Mathematical Soc.
ISBN: 0821844601
Category : Mathematics
Languages : en
Pages : 211
Book Description
In recent years, the interplay between the methods of functional analysis and complex analysis has led to some remarkable results in a wide variety of topics. It turned out that the structure of spaces of holomorphic functions is fundamentally linked to certain invariants initially defined on abstract Frechet spaces as well as to the developments in pluripotential theory. The aim of this volume is to document some of the original contributions to this topic presented at a conference held at Sabanci University in Istanbul, in September 2007. This volume also contains some surveys that give an overview of the state of the art and initiate further research in the interplay between functional and complex analysis.
Publisher: American Mathematical Soc.
ISBN: 0821844601
Category : Mathematics
Languages : en
Pages : 211
Book Description
In recent years, the interplay between the methods of functional analysis and complex analysis has led to some remarkable results in a wide variety of topics. It turned out that the structure of spaces of holomorphic functions is fundamentally linked to certain invariants initially defined on abstract Frechet spaces as well as to the developments in pluripotential theory. The aim of this volume is to document some of the original contributions to this topic presented at a conference held at Sabanci University in Istanbul, in September 2007. This volume also contains some surveys that give an overview of the state of the art and initiate further research in the interplay between functional and complex analysis.