Plasma Simulation Using Gyrokinetic-Gyrofluid Hybrid Models

Plasma Simulation Using Gyrokinetic-Gyrofluid Hybrid Models PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We are developing kinetic ion models for the simulation of extended MHD phenomena. The model they have developed uses full Lorentz force ions, and either drift-kinetic or gyro-kinetic electrons. Quasi-neutrality is assumed and the displacement current is neglected. They are also studying alpha particle driven Toroidal Alfven Eigenmodes (TAE) in the GEM gyrokinetic code [Chen 07]. The basic kinetic ion MHD model was recently reported in an invited talk given by Dan Barnes at the 2007 American Physical Society - Division of Plasma Physics (APS-DPP) and it has been published [Jones 04, Barnes 08]. The model uses an Ohm's law that includes the Hall term, pressure term and the electron inertia [Jones 04]. These results focused on the ion physics and assumed an isothermal electron closure. It is found in conventional gyrokinetic turbulence simulations that the timestep cannot be made much greater than the ion cyclotron period. However, the kinetic ion MHD model has the compressional mode, which further limits the timestep. They have developed an implicit scheme to avoid this timestep constraint. They have also added drift kinetic electrons. This model has been benchmarked linearly. Waves investigated where shear and compressional Alfven, whisterl, ion acoustic, and drift waves, including the kinetic damping rates. This work is ongoing and was first reported at the 2008 Sherwood Fusion Theory Conference [Chen 08] and they are working on a publication. They have also formulated an integrated gyrokinetic electron model, which is of interest for studying electron gradient instabilities and weak guide-field magnetic reconnection.

Plasma Simulation Using Gyrokinetic-Gyrofluid Hybrid Models

Plasma Simulation Using Gyrokinetic-Gyrofluid Hybrid Models PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We are developing kinetic ion models for the simulation of extended MHD phenomena. The model they have developed uses full Lorentz force ions, and either drift-kinetic or gyro-kinetic electrons. Quasi-neutrality is assumed and the displacement current is neglected. They are also studying alpha particle driven Toroidal Alfven Eigenmodes (TAE) in the GEM gyrokinetic code [Chen 07]. The basic kinetic ion MHD model was recently reported in an invited talk given by Dan Barnes at the 2007 American Physical Society - Division of Plasma Physics (APS-DPP) and it has been published [Jones 04, Barnes 08]. The model uses an Ohm's law that includes the Hall term, pressure term and the electron inertia [Jones 04]. These results focused on the ion physics and assumed an isothermal electron closure. It is found in conventional gyrokinetic turbulence simulations that the timestep cannot be made much greater than the ion cyclotron period. However, the kinetic ion MHD model has the compressional mode, which further limits the timestep. They have developed an implicit scheme to avoid this timestep constraint. They have also added drift kinetic electrons. This model has been benchmarked linearly. Waves investigated where shear and compressional Alfven, whisterl, ion acoustic, and drift waves, including the kinetic damping rates. This work is ongoing and was first reported at the 2008 Sherwood Fusion Theory Conference [Chen 08] and they are working on a publication. They have also formulated an integrated gyrokinetic electron model, which is of interest for studying electron gradient instabilities and weak guide-field magnetic reconnection.

Comparisons of Gyrofluid and Gyrokinetic Simulations

Comparisons of Gyrofluid and Gyrokinetic Simulations PDF Author: Michael Alan Beer
Publisher:
ISBN:
Category : Transport theory
Languages : en
Pages : 32

Get Book Here

Book Description


Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test and benchmark for a 2-D Harris current sheet against tearing mode and other instabilities in linear theories/models. More importantly, we have, for the first time, carried out simulation of linear instabilities in a 2-D Harris current sheet with a broad range of guide field BG and the realistic mi/me, and obtained important new results of current sheet instabilities in the presence of a finite BG. Indeed the code has accurately reproduced waves of interest here, such as kinetic Alfven waves, compressional Alfven/whistler wave, and lower-hybrid/modified two-stream waves. Moreover, this simulation scheme is capable of investigating collisionless kinetic physics relevant to magnetic reconnection in the fusion plasmas, in a global scale system for a long-time evolution and, thereby, produce significant new physics compared with both full-particle and hybrid codes. The results, with mi/me=1836 and moderate to large BG as in the real laboratory devices, have not been obtained in previous theory and simulations. The new simulation model will contribute significantly not only to the understanding of fundamental fusion (and space) plasma physics but also to DOE's SciDAC initiative by further pushing the frontiers of simulating realistic fusion plasmas.

The Hybrid Multiscale Simulation Technology

The Hybrid Multiscale Simulation Technology PDF Author: Alexander S. Lipatov
Publisher: Springer Science & Business Media
ISBN: 3662050129
Category : Science
Languages : en
Pages : 411

Get Book Here

Book Description
A comprehensive description of hybrid plasma simulation models providing a very useful summary and guide to the vast literature on this topic.

Plasma Physics and Controlled Nuclear Fusion

Plasma Physics and Controlled Nuclear Fusion PDF Author: Kenro Miyamoto
Publisher: Springer Science & Business Media
ISBN: 3540280979
Category : Science
Languages : en
Pages : 374

Get Book Here

Book Description


Plasma Simulation Studies Using Multilevel Physics Models

Plasma Simulation Studies Using Multilevel Physics Models PDF Author: Wonchull Park
Publisher:
ISBN:
Category : Magnetohydrodynamics
Languages : en
Pages : 9

Get Book Here

Book Description


Plasma Modeling

Plasma Modeling PDF Author: Gianpiero Colonna
Publisher:
ISBN: 9780750335584
Category : SCIENCE
Languages : en
Pages : 0

Get Book Here

Book Description
Plasma Modeling: Methods and applications presents and discusses the different approaches that can be adopted for plasma modeling, giving details about theoretical and numerical methods. It describes kinetic models used in plasma investigations, develops the theory of fluid equations and hybrid models, and discusses applications and practical problems across a range of fields. This updated second edition contains over 200 pages of new material, including an extensive new part that discusses methods to calculate data needed in plasma modeling, such as thermodynamic and transport properties, state specific rate coefficients in heavy particle collisions and electron impact cross-sections. This updated research and reference text is an excellent resource to assist and direct students and researchers who want to develop research activity in the field of plasma physics in the choice of the best model for the problem of interest.

Space and Astrophysical Plasma Simulation

Space and Astrophysical Plasma Simulation PDF Author: Jörg Büchner
Publisher: Springer Nature
ISBN: 3031118707
Category : Science
Languages : en
Pages : 427

Get Book Here

Book Description
This book is a collection of contributions covering the major subjects in numerical simulation of space and astrophysical plasma. It introduces the different approaches and methods to model plasma, the necessary computational codes, and applications in the field. The book is rooted in the previous work Space Plasma Simulation (Springer, 2003) and includes the latest developments. It is divided into three parts and all chapters start with an introduction motivating the topic and its use in research and ends with a discussion of its applications. The chapters of the first part contain tutorials of the different basic approaches needed to perform space plasma simulations. This part is particularly useful for graduate students to master the subject. The second part presents more advanced materials for students and researchers who already work with pre-existing codes but want to implement the recent progresses made in the field. The last part of the book discusses developments in the area for researchers who are actively working on advanced simulation approaches like higher order schemes and artificial intelligence, agent-based technologies for multiscale and multi-dimensional systems, which represent the recent innovative contributions made in space plasma research.

Turbulence and Instabilities in Magnetised Plasmas

Turbulence and Instabilities in Magnetised Plasmas PDF Author: Bruce D. Scott
Publisher:
ISBN: 9780750338547
Category : Plasma dynamics
Languages : en
Pages : 0

Get Book Here

Book Description
The second of a two-volume set, this book begins with a review of the concepts behind magnetised plasma turbulence as covered in Volume One. After covering the effects of temperature dynamics, especially heat flux inertia, the rest of the first half reviews classical field theory in the necessary language, then builds the gyrokinetic and gyrofluid theory in a systematic and self-consistent manner, with special emphasis on energetic consistency.

A Hierarchy of Electromagnetic Gyrokinetic and Fluid Hybrid Models for the Simulation of Global Modes

A Hierarchy of Electromagnetic Gyrokinetic and Fluid Hybrid Models for the Simulation of Global Modes PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description