Plasma-Induced Ignition and Plasma-Assisted Combustion in High-Speed Flow

Plasma-Induced Ignition and Plasma-Assisted Combustion in High-Speed Flow PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description
The paper is dedicated to the experimental demonstration of plasma technology abilities in the field of high speed combustion. It is doing in three principal directions: control of the structure and the parameters of the duct driven flows; the ignition of air fuel composition at low mean gas temperature; and the mixing intensification inflow.

Plasma-Induced Ignition and Plasma-Assisted Combustion in High-Speed Flow

Plasma-Induced Ignition and Plasma-Assisted Combustion in High-Speed Flow PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description
The paper is dedicated to the experimental demonstration of plasma technology abilities in the field of high speed combustion. It is doing in three principal directions: control of the structure and the parameters of the duct driven flows; the ignition of air fuel composition at low mean gas temperature; and the mixing intensification inflow.

Plasma Assisted Combustion and Flameholding in High Speed Cavity Flows

Plasma Assisted Combustion and Flameholding in High Speed Cavity Flows PDF Author: Joseph Aloysius Heinrichs
Publisher:
ISBN:
Category :
Languages : en
Pages : 113

Get Book Here

Book Description
Abstract: This thesis presents an experimental study of non-equilibrium, low temperature, large volume plasma assisted ignition and flameholding in high-speed, non-premixed fuel-air flows. The plasma is produced between two electrodes powered by a high-voltage, nanosecond pulse generator operated at a high pulse repetition rate. Ignition in this type of plasma occurs due to production of highly reactive radicals by electron impact excitation and dissociation, as opposed to more common thermal ignition. Previously, it has been shown that this type of plasma can reduce ignition delay time and ignition temperature. The experiments performed in this thesis focus on application of these plasmas to ignition, and flameholding in high-speed cavity flows. The experiments discussed in this thesis continue previous work using a high-speed combustion test section with a larger cavity, and the previous results are compared to the present work. Several modifications have been made to the test section and electrodes compared to the design used in previous work in order to reduce the cavity effect on the main flow and maintain diffuse plasma between the electrodes in the cavity. The electrodes used in these experiments are placed in a cavity recess, used to create a recirculation flow region with long residence time, where ignition and flameholding can occur. In order to analyze the nanosecond pulse plasma and the flame, various diagnostics were used, including current and voltage measurements, UV emission measurements, ICCD camera imaging, static pressure measurements, and time-averaged emission spectroscopy. The experiments in this thesis were performed at relatively low pressures (P=150-200 torr) using hydrogen and ethylene fuels injected into the cavity. Current and voltage measurements showed that ~1-2 mJ was coupled to the plasma by each pulse. ICCD imaging and UV emission data revealed that the plasma sustained in quiescent air was diffuse. When ethylene was injected into the cavity to ignite the flow, ICCD imaging and UV emission data showed arcing to bare metal surfaces in the test section occurred shortly after ignition, which prompted switching to hydrogen fuel. Using hydrogen, ICCD imaging and UV emission showed that the plasma remained diffuse and confined to the area between electrodes. Time-average emission spectroscopy measurements revealed that the air-flow temperature remained low until fuel was injected and ignition occurred. Pressure and UV emission measurements were used to find velocity limits within which the flow ignited. It was found that the upper limit of velocity depends strongly on the static pressure in the test section. The highest flow velocity at which combustion was achieved in H2-air flows was 270 m/s at 180 torr. This represents considerable improvement compared to previous work using nanosecond pulse discharge for ignition in cavities. Preliminary results show that plasma generation and ignition are possible using a smaller diameter electrode such that the cavity size can be further reduced, and that a supersonic flow can be produced in the present test section using a Mach 2 nozzle placed upstream of the cavity. The appendix details a study on the production of oxygen atoms using a pulsed excimer laser.

Plasma Assisted Combustion

Plasma Assisted Combustion PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 372

Get Book Here

Book Description
This report results from a contract tasking Moscow Institute of Physics and Technology as follows: The contractor will investigate the use of high voltage, nano-second plasma discharges to ignite and efficiently combust fuel/air mixtures in high speed flows. This strongly nonequilibrium low-temperature plasma has a high mean energy of electrons and will provide a source of reactive atoms, radicals, and excited molecules which has been shown to enhance ignition and combustion. The short duration of the pulses results in relatively low power requirements for generating the discharge. The goal is to demonstrate and understand the physics of energy exchange, ignition and combustion . Also, the use of this type of plasma for aerodynamic flow control will be investigated. Finally, applicability to use this type of discharge to directly initiate a detonation wave will be investigated.

Ignition Systems for Gasoline Engines

Ignition Systems for Gasoline Engines PDF Author: Michael Günther
Publisher: Springer
ISBN: 3319455044
Category : Technology & Engineering
Languages : en
Pages : 324

Get Book Here

Book Description
The volume includes selected and reviewed papers from the 3rd Conference on Ignition Systems for Gasoline Engines in Berlin in November 2016. Experts from industry and universities discuss in their papers the challenges to ignition systems in providing reliable, precise ignition in the light of a wide spread in mixture quality, high exhaust gas recirculation rates and high cylinder pressures. Classic spark plug ignition as well as alternative ignition systems are assessed, the ignition system being one of the key technologies to further optimizing the gasoline engine.

Plasma-assisted Combustion in a Supersonic Flow

Plasma-assisted Combustion in a Supersonic Flow PDF Author: Hyungrok Do
Publisher:
ISBN:
Category :
Languages : en
Pages : 260

Get Book Here

Book Description


Fuel Cells: Technologies for Fuel Processing

Fuel Cells: Technologies for Fuel Processing PDF Author: Dushyant Shekhawat
Publisher: Elsevier
ISBN: 0444535640
Category : Technology & Engineering
Languages : en
Pages : 569

Get Book Here

Book Description
Fuel Cells: Technologies for Fuel Processing provides an overview of the most important aspects of fuel reforming to the generally interested reader, researcher, technologist, teacher, student, or engineer. The topics covered include all aspects of fuel reforming: fundamental chemistry, different modes of reforming, catalysts, catalyst deactivation, fuel desulfurization, reaction engineering, novel reforming concepts, thermodynamics, heat and mass transfer issues, system design, and recent research and development. While no attempt is made to describe the fuel cell itself, there is sufficient description of the fuel cell to show how it affects the fuel reformer. By focusing on the fundamentals, this book aims to be a source of information now and in the future. By avoiding time-sensitive information/analysis (e.g., economics) it serves as a single source of information for scientists and engineers in fuel processing technology. The material is presented in such a way that this book will serve as a reference for graduate level courses, fuel cell developers, and fuel cell researchers. - Chapters written by experts in each area - Extensive bibliography supporting each chapter - Detailed index - Up-to-date diagrams and full colour illustrations

Encyclopedia of Plasma Technology - Two Volume Set

Encyclopedia of Plasma Technology - Two Volume Set PDF Author: J. Leon Shohet
Publisher: CRC Press
ISBN: 1000031705
Category : Technology & Engineering
Languages : en
Pages : 1654

Get Book Here

Book Description
Technical plasmas have a wide range of industrial applications. The Encyclopedia of Plasma Technology covers all aspects of plasma technology from the fundamentals to a range of applications across a large number of industries and disciplines. Topics covered include nanotechnology, solar cell technology, biomedical and clinical applications, electronic materials, sustainability, and clean technologies. The book bridges materials science, industrial chemistry, physics, and engineering, making it a must have for researchers in industry and academia, as well as those working on application-oriented plasma technologies. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]

Toward Plasma-Assisted Ignition in Scramjets

Toward Plasma-Assisted Ignition in Scramjets PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 27

Get Book Here

Book Description
The Air Force plasma ignition program is assessing the prospect of main-fuel ignition with plasma generating devices in a supersonic flow. As the study progresses baseline conditions of operation are being established such as the required operational time of the device to initiate a combustion shock train. The two plasma torches currently under investigation consist of a DC constricted-arc design from the Virginia Polytechnic Institute and State University and an AC unconstricted-arc design based on a modified spark-plug from Polytechnic University. The plasma torches are realistic in size and operate within current power constraints while differing substantially in orifice geometry. In order to compare the potential of each concept the flow physics of each part of the igniter/fuel-injector/combustor system are being studied. In each step of the program, we utilize CFD and experiments to help define and advance the ignition process. To understand the constraints involved with ignition process of a hydrocarbon fuel jet an experimental effort to study gaseous and liquid hydrocarbons is underway, involving the testing of ethylene and JP-7 fuels with nitrogen and air plasmas. Results from the individual igniter studies have shown the plasma igniters to produce hot pockets of highly excited gas with peak temperatures up to (and in some cases above) 5000 K at only 2-kW total input power. In addition ethylene and JP-7 flames with a significant level of OH as determined by OH PLIF were also produced in a Mach-2 supersonic flow with a total temperature and pressure of 590 K and 5.4 atm respectively.

Study of Internal and External Plasma Assisted Combustion in Supersonic Gas Flow

Study of Internal and External Plasma Assisted Combustion in Supersonic Gas Flow PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 36

Get Book Here

Book Description
The Project is devoted to basic study on the field of external and internal plasma assisted combustion. This effort consists of three Tasks: Task #1 is titled "Internal plasma assisted combustion controlled by improved plasma generators in metal channel at conditions similar to Scramjet"; Task #2 is tilted "External plasma combustion experiment in a supersonic flow (Mtilde2, Pst=1 Bar)". This is a study of flow around model F with plasma combustion generator in wind tunnel; Task #3 is tilted "Study of supersonic flow around model E with combined plasma generator (PG Comb= PG HF +E beam)". Here. the main plasma parameters could be changed independently in PG- Comb. Electron concentration will be controlled by E-beam. Electron temperature could be controlled by external HF electric field. The main goals of this work is a study of following: Optimal radical generation in fuel/air mixture and combustion control by non equilibrium plasmoids, Advanced mixture of fuel in gas flow by structural plasmoids.

The Proceedings of 2023 4th International Symposium on Insulation and Discharge Computation for Power Equipment (IDCOMPU2023)

The Proceedings of 2023 4th International Symposium on Insulation and Discharge Computation for Power Equipment (IDCOMPU2023) PDF Author: Xuzhu Dong
Publisher: Springer Nature
ISBN: 9819974011
Category : Technology & Engineering
Languages : en
Pages : 731

Get Book Here

Book Description
This book includes original, peer-reviewed research papers from the 2023 4th International Symposium on Insulation and Discharge Computation for Power Equipment (IDCOMPU2023), held in Wuhan, China. The topics covered include but are not limited to: insulation, discharge computations, electric power equipment, and electrical materials. The papers share the latest findings in the field of insulation and discharge computations of electric power equipment, making the book a valuable asset for researchers, engineers, university students, etc.