Author: Alexander Shen
Publisher: American Mathematical Soc.
ISBN: 1470419211
Category : Juvenile Nonfiction
Languages : en
Pages : 229
Book Description
Classical Euclidean geometry, with all its triangles, circles, and inscribed angles, remains an excellent playground for high-school mathematics students, even if it looks outdated from the professional mathematician's viewpoint. It provides an excellent choice of elegant and natural problems that can be used in a course based on problem solving. The book contains more than 750 (mostly) easy but nontrivial problems in all areas of plane geometry and solutions for most of them, as well as additional problems for self-study (some with hints). Each chapter also provides concise reminders of basic notions used in the chapter, so the book is almost self-contained (although a good textbook and competent teacher are always recommended). More than 450 figures illustrate the problems and their solutions. The book can be used by motivated high-school students, as well as their teachers and parents. After solving the problems in the book the student will have mastered the main notions and methods of plane geometry and, hopefully, will have had fun in the process. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. What a joy! Shen's ``Geometry in Problems'' is a gift to the school teaching world. Beautifully organized by content topic, Shen has collated a vast collection of fresh, innovative, and highly classroom-relevant questions, problems, and challenges sure to enliven the minds and clever thinking of all those studying Euclidean geometry for the first time. This book is a spectacular resource for educators and students alike. Users will not only sharpen their mathematical understanding of specific topics but will also sharpen their problem-solving wits and come to truly own the mathematics explored. Also, Math Circle leaders can draw much inspiration for session ideas from the material presented in this book. --James Tanton, Mathematician-at-Large, Mathematical Association of America We learn mathematics best by doing mathematics. The author of this book recognizes this principle. He invites the reader to participate in learning plane geometry through carefully chosen problems, with brief explanations leading to much activity. The problems in the book are sometimes deep and subtle: almost everyone can do some of them, and almost no one can do all. The reader comes away with a view of geometry refreshed by experience. --Mark Saul, Director of Competitions, Mathematical Association of America
Geometry in Problems
Author: Alexander Shen
Publisher: American Mathematical Soc.
ISBN: 1470419211
Category : Juvenile Nonfiction
Languages : en
Pages : 229
Book Description
Classical Euclidean geometry, with all its triangles, circles, and inscribed angles, remains an excellent playground for high-school mathematics students, even if it looks outdated from the professional mathematician's viewpoint. It provides an excellent choice of elegant and natural problems that can be used in a course based on problem solving. The book contains more than 750 (mostly) easy but nontrivial problems in all areas of plane geometry and solutions for most of them, as well as additional problems for self-study (some with hints). Each chapter also provides concise reminders of basic notions used in the chapter, so the book is almost self-contained (although a good textbook and competent teacher are always recommended). More than 450 figures illustrate the problems and their solutions. The book can be used by motivated high-school students, as well as their teachers and parents. After solving the problems in the book the student will have mastered the main notions and methods of plane geometry and, hopefully, will have had fun in the process. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. What a joy! Shen's ``Geometry in Problems'' is a gift to the school teaching world. Beautifully organized by content topic, Shen has collated a vast collection of fresh, innovative, and highly classroom-relevant questions, problems, and challenges sure to enliven the minds and clever thinking of all those studying Euclidean geometry for the first time. This book is a spectacular resource for educators and students alike. Users will not only sharpen their mathematical understanding of specific topics but will also sharpen their problem-solving wits and come to truly own the mathematics explored. Also, Math Circle leaders can draw much inspiration for session ideas from the material presented in this book. --James Tanton, Mathematician-at-Large, Mathematical Association of America We learn mathematics best by doing mathematics. The author of this book recognizes this principle. He invites the reader to participate in learning plane geometry through carefully chosen problems, with brief explanations leading to much activity. The problems in the book are sometimes deep and subtle: almost everyone can do some of them, and almost no one can do all. The reader comes away with a view of geometry refreshed by experience. --Mark Saul, Director of Competitions, Mathematical Association of America
Publisher: American Mathematical Soc.
ISBN: 1470419211
Category : Juvenile Nonfiction
Languages : en
Pages : 229
Book Description
Classical Euclidean geometry, with all its triangles, circles, and inscribed angles, remains an excellent playground for high-school mathematics students, even if it looks outdated from the professional mathematician's viewpoint. It provides an excellent choice of elegant and natural problems that can be used in a course based on problem solving. The book contains more than 750 (mostly) easy but nontrivial problems in all areas of plane geometry and solutions for most of them, as well as additional problems for self-study (some with hints). Each chapter also provides concise reminders of basic notions used in the chapter, so the book is almost self-contained (although a good textbook and competent teacher are always recommended). More than 450 figures illustrate the problems and their solutions. The book can be used by motivated high-school students, as well as their teachers and parents. After solving the problems in the book the student will have mastered the main notions and methods of plane geometry and, hopefully, will have had fun in the process. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. What a joy! Shen's ``Geometry in Problems'' is a gift to the school teaching world. Beautifully organized by content topic, Shen has collated a vast collection of fresh, innovative, and highly classroom-relevant questions, problems, and challenges sure to enliven the minds and clever thinking of all those studying Euclidean geometry for the first time. This book is a spectacular resource for educators and students alike. Users will not only sharpen their mathematical understanding of specific topics but will also sharpen their problem-solving wits and come to truly own the mathematics explored. Also, Math Circle leaders can draw much inspiration for session ideas from the material presented in this book. --James Tanton, Mathematician-at-Large, Mathematical Association of America We learn mathematics best by doing mathematics. The author of this book recognizes this principle. He invites the reader to participate in learning plane geometry through carefully chosen problems, with brief explanations leading to much activity. The problems in the book are sometimes deep and subtle: almost everyone can do some of them, and almost no one can do all. The reader comes away with a view of geometry refreshed by experience. --Mark Saul, Director of Competitions, Mathematical Association of America
The Elementary Differential Geometry of Plane Curves
Author: Ralph Howard Fowler
Publisher:
ISBN:
Category : Curves, Algebraic
Languages : en
Pages : 128
Book Description
Publisher:
ISBN:
Category : Curves, Algebraic
Languages : en
Pages : 128
Book Description
Problems in Plane Geometry
Author: I.F. Sharygin
Publisher: Imported Publication
ISBN: 9785030001807
Category : Geometry, Plane
Languages : en
Pages : 408
Book Description
Publisher: Imported Publication
ISBN: 9785030001807
Category : Geometry, Plane
Languages : en
Pages : 408
Book Description
Plane Problems in Elementary Geometry, Or, Problems in the Elementary Conic Sections, the Point, Straight Line, and Circle
Author: Samuel Edward Warren
Publisher:
ISBN:
Category : Geometrical drawing
Languages : en
Pages : 186
Book Description
Publisher:
ISBN:
Category : Geometrical drawing
Languages : en
Pages : 186
Book Description
Old and New Unsolved Problems in Plane Geometry and Number Theory
Author: Victor Klee
Publisher: American Mathematical Soc.
ISBN: 1470454610
Category : Education
Languages : en
Pages : 352
Book Description
Victor Klee and Stan Wagon discuss some of the unsolved problems in number theory and geometry, many of which can be understood by readers with a very modest mathematical background. The presentation is organized around 24 central problems, many of which are accompanied by other, related problems. The authors place each problem in its historical and mathematical context, and the discussion is at the level of undergraduate mathematics. Each problem section is presented in two parts. The first gives an elementary overview discussing the history and both the solved and unsolved variants of the problem. The second part contains more details, including a few proofs of related results, a wider and deeper survey of what is known about the problem and its relatives, and a large collection of references. Both parts contain exercises, with solutions. The book is aimed at both teachers and students of mathematics who want to know more about famous unsolved problems.
Publisher: American Mathematical Soc.
ISBN: 1470454610
Category : Education
Languages : en
Pages : 352
Book Description
Victor Klee and Stan Wagon discuss some of the unsolved problems in number theory and geometry, many of which can be understood by readers with a very modest mathematical background. The presentation is organized around 24 central problems, many of which are accompanied by other, related problems. The authors place each problem in its historical and mathematical context, and the discussion is at the level of undergraduate mathematics. Each problem section is presented in two parts. The first gives an elementary overview discussing the history and both the solved and unsolved variants of the problem. The second part contains more details, including a few proofs of related results, a wider and deeper survey of what is known about the problem and its relatives, and a large collection of references. Both parts contain exercises, with solutions. The book is aimed at both teachers and students of mathematics who want to know more about famous unsolved problems.
Problems in Analytic Geometry
Author: D. Kletenik
Publisher:
ISBN: 9324191756
Category : Study Aids
Languages : en
Pages : 269
Book Description
Publisher:
ISBN: 9324191756
Category : Study Aids
Languages : en
Pages : 269
Book Description
Text-book of Elementary Plane Geometry
Author: Julius Petersen
Publisher:
ISBN:
Category : Geometry, Modern
Languages : en
Pages : 86
Book Description
Publisher:
ISBN:
Category : Geometry, Modern
Languages : en
Pages : 86
Book Description
Elementary College Geometry
Author: Henry Africk
Publisher:
ISBN: 9780759341906
Category : Geometry
Languages : en
Pages : 369
Book Description
Publisher:
ISBN: 9780759341906
Category : Geometry
Languages : en
Pages : 369
Book Description
Plane Problems in Elementary Geometry, Or, Problems on the Elementary Conic Sections: the Point, Straight Line, and Circle
Author: Samuel Edward Warren
Publisher:
ISBN:
Category : Geometry, Plane
Languages : en
Pages : 182
Book Description
Publisher:
ISBN:
Category : Geometry, Plane
Languages : en
Pages : 182
Book Description
Geometry: Plane and Fancy
Author: David A. Singer
Publisher: Springer Science & Business Media
ISBN: 9780387983066
Category : Mathematics
Languages : en
Pages : 176
Book Description
A fascinating tour through parts of geometry students are unlikely to see in the rest of their studies while, at the same time, anchoring their excursions to the well known parallel postulate of Euclid. The author shows how alternatives to Euclids fifth postulate lead to interesting and different patterns and symmetries, and, in the process of examining geometric objects, the author incorporates the algebra of complex and hypercomplex numbers, some graph theory, and some topology. Interesting problems are scattered throughout the text. Nevertheless, the book merely assumes a course in Euclidean geometry at high school level. While many concepts introduced are advanced, the mathematical techniques are not. Singers lively exposition and off-beat approach will greatly appeal both to students and mathematicians, and the contents of the book can be covered in a one-semester course, perhaps as a sequel to a Euclidean geometry course.
Publisher: Springer Science & Business Media
ISBN: 9780387983066
Category : Mathematics
Languages : en
Pages : 176
Book Description
A fascinating tour through parts of geometry students are unlikely to see in the rest of their studies while, at the same time, anchoring their excursions to the well known parallel postulate of Euclid. The author shows how alternatives to Euclids fifth postulate lead to interesting and different patterns and symmetries, and, in the process of examining geometric objects, the author incorporates the algebra of complex and hypercomplex numbers, some graph theory, and some topology. Interesting problems are scattered throughout the text. Nevertheless, the book merely assumes a course in Euclidean geometry at high school level. While many concepts introduced are advanced, the mathematical techniques are not. Singers lively exposition and off-beat approach will greatly appeal both to students and mathematicians, and the contents of the book can be covered in a one-semester course, perhaps as a sequel to a Euclidean geometry course.