Physical Theory and its Interpretation

Physical Theory and its Interpretation PDF Author: William Demopoulos
Publisher: Springer Science & Business Media
ISBN: 1402048769
Category : Science
Languages : en
Pages : 285

Get Book

Book Description
The essays in this volume were written by leading researchers on classical mechanics, statistical mechanics, quantum theory, and relativity. They detail central topics in the foundations of physics, including the role of symmetry principles in classical and quantum physics, Einstein's hole argument in general relativity, quantum mechanics and special relativity, quantum correlations, quantum logic, and quantum probability and information.

Physical Theory and its Interpretation

Physical Theory and its Interpretation PDF Author: William Demopoulos
Publisher: Springer Science & Business Media
ISBN: 1402048769
Category : Science
Languages : en
Pages : 285

Get Book

Book Description
The essays in this volume were written by leading researchers on classical mechanics, statistical mechanics, quantum theory, and relativity. They detail central topics in the foundations of physics, including the role of symmetry principles in classical and quantum physics, Einstein's hole argument in general relativity, quantum mechanics and special relativity, quantum correlations, quantum logic, and quantum probability and information.

Physical Theory

Physical Theory PDF Author: Lawrence Sklar
Publisher: Oxford University Press, USA
ISBN: 019514564X
Category : Philosophy
Languages : en
Pages : 305

Get Book

Book Description
This collection surveys two aspects of contemporary philosophy of science: the methods of physical science and crucial aspects of foundational theories of physics. Part 1 explores the methodological topics, scientific explanation, probabilistic explanation, laws of nature, interpretation of theories, the structure of physical theories, and evolution and revolution in scientific change. In part 2 the studies of foundational physics explore contemporary theories of space and time, quantum theories of fields, and statistical mechanics.

Foundations of Quantum Mechanics

Foundations of Quantum Mechanics PDF Author: Travis Norsen
Publisher: Springer
ISBN: 3319658670
Category : Science
Languages : en
Pages : 310

Get Book

Book Description
Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is accessible to students with at least one semester of prior exposure to quantum (or "modern") physics and includes over a hundred engaging end-of-chapter "Projects" that make the book suitable for either a traditional classroom or for self-study.

Physical Theory

Physical Theory PDF Author: Lawrence Sklar
Publisher: Oxford University Press
ISBN: 0199336024
Category : Philosophy
Languages : en
Pages : 304

Get Book

Book Description
In nine new essays, distinguished philosophers of science take on outstanding philosophical issues that arise in the exploration of the foundations of contemporary, especially physical scientific theories. In the first part of the book issues of scientific method are explored. What are we asking when we pose scientific "why?" questions? How does probability play a role in answering such questions? What are scientific laws of nature? How can we understand what abstract theories are telling us about the world? What is the structure of the theories we use to explain the observable phenomena? Finally, how do theories evolve over time and what consequence do such changes have for our intuition that science is seeking the truth? In the second part of the volume, foundational issues are explored in a number of crucial physical theories. What do our best available theories tell us about space and time? When we apply quantum theory to fields or other systems with infinite degrees of freedom, what new foundational puzzles appear and how might a theory of interpretation deal with them? Finally, what are the crucial foundational issues in statistical mechanics, where probabilities are applied to explain macroscopic thermal phenomena?

Information Theory and Quantum Physics

Information Theory and Quantum Physics PDF Author: Herbert S. Green
Publisher: Springer Science & Business Media
ISBN: 364257162X
Category : Science
Languages : en
Pages : 248

Get Book

Book Description
In this highly readable book, H.S. Green, a former student of Max Born and well known as an author in physics and in the philosophy of science, presents a timely analysis of theoretical physics and related fundamental problems.

Beyond Measure

Beyond Measure PDF Author: J. E. Baggott
Publisher:
ISBN: 9780198525363
Category : Science
Languages : en
Pages : 400

Get Book

Book Description
Presents the problems of quantum theory from the perspective of mathematical formalism. -- Back cover.

The Tests of Time

The Tests of Time PDF Author: Lisa M. Dolling
Publisher: Princeton University Press
ISBN: 9780691090856
Category : Science
Languages : en
Pages : 762

Get Book

Book Description
The development of physical theory is one of our greatest intellectual achievements. Its products--the currently prevailing theories of physics, astronomy, and cosmology--have proved themselves to possess intrinsic beauty and to have enormous explanatory and predictive power. This anthology of primary readings chronicles the birth and maturation of five such theories (the heliocentric theory, the electromagnetic field theory, special and general relativity, quantum theory, and the big bang theory) in the words of the scientists who brought them to life. It is the first historical account that captures the rich substance of these theories, each of which represents a fascinating story of the interplay of evidence and insight--and of dialogue among great minds. Readers sit in with Copernicus, Kepler, and Galileo as they overturn the geocentric universe; observe the genius of Faraday and Maxwell as they "discover" the electromagnetic field; look over Einstein's shoulder as he works out the details of relativity; listen in as Einstein and Bohr argue for the soul of quantum mechanics in the Completeness Debate; and watch as Hubble and others reveal the history of the universe. The editors' approach highlights the moments of discovery that rise from scientific creativity, and the presentation humanizes the scientific process, revealing the extent to which great scientists were the first to consider the philosophical implications of their work. But, most significantly, the editors offer this as their central thesis: although each was ushered in by a revolution, and each contains counterintuitive elements that delayed its acceptance, these five theories exhibit a continuous rational development that has led them to a permanent place in the worldview of science. Accessible to the general reader yet sufficiently substantive that working scientists will find value in it, The Tests of Time offers an intimate look into how physical theory has been developed, by the brilliant people who have developed it.

Philosophy of Physics

Philosophy of Physics PDF Author: M. Bunge
Publisher: Springer Science & Business Media
ISBN: 9401025223
Category : Science
Languages : en
Pages : 259

Get Book

Book Description
This book deals with some of the current issues in the philosophy, methodology and foundations of physics. Some such problems are: - Do mathematical formalisms interpret themselves or is it necessary to adjoin them interpretation assumptions, and if so how are these as sumptions to be framed? - What are physical theories about: physical systems or laboratory operations or both or neither? - How are the basic concepts of a theory to be introduced: by ref erence to measurements or by explicit definition or axiomatically? - What is the use ofaxiomatics in physics? - How are the various physical theories inter-related: like Chinese boxes or in more complex ways? - What is the role of analogy in the construction and in the inter pretation of physical theories? In particular, are classical analogues like those of particle and wave indispensable in quantum theories? - What is the role of the apparatus in quantum phenomena and what is the place of measurement theory in quantum mechanics? - How does a theory face experiment: single-handed or with the help of further theories? These and several other questions of the kind are met with by the research physicist, the physics teacher and the physics student in their everyday work. If dodged they will recur. And a wrong answer to them may obscure the understanding of what has been achieved and may even hamper further advancement. Philosophy, methodology and foundations, like rose bushes, are enjoyable when cultivated but become ugly and thorny when neglected.

The Emergent Multiverse

The Emergent Multiverse PDF Author: David Wallace
Publisher: OUP Oxford
ISBN: 0191057398
Category : Philosophy
Languages : en
Pages : 547

Get Book

Book Description
The Emergent Multiverse presents a striking new account of the 'many worlds' approach to quantum theory. The point of science, it is generally accepted, is to tell us how the world works and what it is like. But quantum theory seems to fail to do this: taken literally as a theory of the world, it seems to make crazy claims: particles are in two places at once; cats are alive and dead at the same time. So physicists and philosophers have often been led either to give up on the idea that quantum theory describes reality, or to modify or augment the theory. The Everett interpretation of quantum mechanics takes the apparent craziness seriously, and asks, 'what would it be like if particles really were in two places at once, if cats really were alive and dead at the same time'? The answer, it turns out, is that if the world were like that—if it were as quantum theory claims—it would be a world that, at the macroscopic level, was constantly branching into copies—hence the more sensationalist name for the Everett interpretation, the 'many worlds theory'. But really, the interpretation is not sensationalist at all: it simply takes quantum theory seriously, literally, as a description of the world. Once dismissed as absurd, it is now accepted by many physicists as the best way to make coherent sense of quantum theory. David Wallace offers a clear and up-to-date survey of work on the Everett interpretation in physics and in philosophy of science, and at the same time provides a self-contained and thoroughly modern account of it—an account which is accessible to readers who have previously studied quantum theory at undergraduate level, and which will shape the future direction of research by leading experts in the field.

Physical Theory as Logico-Operational Structure

Physical Theory as Logico-Operational Structure PDF Author: C.A. Hooker
Publisher: Springer Science & Business Media
ISBN: 9400997698
Category : Science
Languages : en
Pages : 348

Get Book

Book Description
In two earlier volumes, entitled The Logico-Algebraic Approach to Quan tum Mechanics (hereafter LAA I, II), I have presented collections of research papers which trace out the historical development and contem porary flowering of a particular approach to physical theory. One might characterise this approach as the extraction of an abstract logico-algebraic skeleton from each physical theory and the reconstruction of the physical theory as construction of mathematical and interpretive 'flesh' (e. g. , measures, operators, mappings etc. ) on this skeleton. The idea is to show how the specific features of a theory that are easily seen in application (e. g. , 'interference' among observables in quantum mechanics) arise out of the character of its core abstract structure. In this fashion both the deeper nature of a theory (e. g. , in what precise sense quantum mechanics is strongly statistical) and the deeper differences between theories (e. g. clas sical mechanics, though also a 'mechanics', is not strongly statistical) are penetratingly illuminated. What I would describe as the 'mainstream' logico-algebraic tradition is captured in these two collections of papers (LAA I, II). The abstract, structural approach to the characterisation of physical theory has been the basis of a striking transformation, in this century, in the understanding of theories in mathematical physics. There has emerged clearly the idea that physical theories are most significantly characterised by their abstract structural components.